Adaptive prescribed performance servo control of an automotive electronic throttle system with actuator constraint

To further improve the transient and steady-state performance of automotive electronic throttle position tracking, in this paper an adaptive prescribed performance servo control strategy is designed and applied to a real electronic throttle control system. In view of the possible high gain of the prescribed performance controller in practice, the actuator constraint is also considered in the controller design. The designed servo controller can ensure the transient and steady-state responses of tracking error are limited in the range prescribed by the performance function, and converge with the prescribed convergence rate and have no overshoot. The incorporated adaptive updating law can enhance the robustness of the transient and steady-state performance against uncertainty from the product tolerance, the operating conditions, and the aging of components. Both Matlab/Simulink simulation and dSPACE-based hardware-in-the-loop experimental verification show the effectiveness and applicability of the proposed control strategy.

___

  • [1] Jiao X, Zhang J, Shen T. An adaptive servo control strategy for automotive electronic throttle and experimental validation. IEEE Transactions on Industrial Electronics 2014; 61 (11): 6275-6284. doi: 10.1109/TIE.2014.2311398
  • [2] Montanaro U, Gaeta AD, Giglio V. Robust discrete-time MRAC with minimal controller synthesis of an electronic throttle body. IEEE/ASME Transactions on Mechatronics 2014; 19 (2): 524-537. doi: 10.1109/TMECH.2013.2247614
  • [3] Pavkovic D, Deur J, Jansz M, Pericet N. Adaptive control of automotive electronic throttle. Control Engineering Practice 2006; 14 (2): 121-136. doi: 10.1016/j.conengprac.2005.01.006
  • [4] Pujol G, Gaeta Y, Montanaro L, Vargas AN. Asymmetric modelling and control of an electronic throttle. International Journal of Numerical Modelling Electronic Networks Devices and Fields 2010; 29 (2): 192-204. doi: 10.1002/jnm.2063
  • [5] Yuan XF, Wang YN, Sun W, Wu L. RBF networks-based adaptive inverse model control system for electronic throttle. IEEE Transactions on Control Systems Technology 2010; 18 (3): 750-756. doi: 10.1109/TCST.2009.2026397
  • [6] Bai R. Adaptive sliding-mode control of an automotive electronic throttle in the presence of input saturation constraint. IEEE/CAA Journal of Automatica Sinica 2018; 5 (4): 116-122. doi: 10.1109/JAS.2018.7511147
  • [7] Wang H, Li ZG, Jin XZ, Huang Y, Kong H et al. Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Transactions on Vehicular Technology 2018; 67 (9): 8129-8143. doi: 10.1109/TVT.2018.2850923
  • [8] Wang H, Liu LF, He P, Yu M, Do TM et al. Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dynamics 2013; 85 (2): 1331-1344. doi: 10.1007/s11071- 016-2763-8
  • [9] Sun H, Zhao H, Huang K, Qiu M, Zhen S et al. A fuzzy approach for optimal robust control design of an automotive electronic throttle system. IEEE Transactions on Fuzzy Systems 2018; 26 (2): 694-704. doi: 10.1109/TFUZZ.2017.2688343
  • [10] Wang CH, Huang DY. A new intelligent fuzzy controller for nonlinear hysteretic electronic throttle in modern intelligent automobiles. IEEE Transactions on Industrial Electronics 2013; 60 (6): 2332-2345. doi: 10.1109/TIE.2012.2193861
  • [11] Yuan XF, Wang YN. A novel electronic-throttle-valve controller based on approximate model method. IEEE Transactions on Industrial Electronics 2009; 56 (3): 883-890. doi: 10.1109/TIE.2008.2004672
  • [12] Jiao X, Li G, Wang H. Adaptive finite time servo control for automotive electronic throttle with experimental analysis. Mechatronics 2018; 53 (4): 192-201. doi: 10.1016/j.mechatronics.2018.06.010
  • [13] Li G, Jiao X. Synthesis and validation of finite time servo control with PSO identification for automotive electronic throttle. Nonlinear Dynamics 2017; 90: 1165-1177. doi: 10.1007/s11071-017-3718-4
  • [14] Chen M, Ge SS, Ren BB. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 2011; 47 (3): 452-465. doi: 10.1016/j.automatica.2011.01.025
  • [15] Wen CY, Zhou J, Liu ZT, Su H. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Transactions on Automatic Control 2011; 56 (7): 1672-1678. doi: 10.1109/TAC.2011.2122730
  • [16] He W, Dong YT, Sun CY. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2016; 46 (3): 334-344. doi: 10.1109/TSMC.2015.2429555
  • [17] Perez-Arancibia NO, Tsao TC, Gibson JS. Saturation-induced instability and its avoidance in adaptive control of hard disk drives. IEEE Transactions on Control Systems Technology 2010; 18 (2): 368-382. doi: 10.1109/TCST.2009.2018298
  • [18] Han SI, Lee JM. Improved prescribed performance constraint control for a strict feedback non-linear dynamic system. IET Control Theory Applications 2013; 7 (14): 1818-1827. doi: 10.1049/iet-cta.2013.0181
  • [19] Wang W, Huang JS, Wen JY. Prescribed performance boundbased adaptive path-following control of uncertain nonholonomic mobile robots. International Journal of Adaptive Control Signal Processing 2017; 31 (5): 805-822. doi: 10.1002/acs.2732
  • [20] Na J, Chen Q, Ren XM, Guo Y. Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Transactions on Industrial Electronics 2014; 61 (1): 486-494. doi: 10.1109/TIE.2013.2240635