Adaptive blind equalization for a MIMO chaotic communication system

There exist few blind solutions for chaotic MIMO channel equalization. In this work, a chaotic MIMO channel equalization framework is proposed. The objective function to be minimized in the proposed solution is obtained by adopting the objective function developed for chaotic SISO channel equalization. Furthermore, an optimum filter that minimizes the proposed cost function is designed to recover chaotic input signals assuming that the channel is known. The stationary point of the adaptive solution is equal to the optimal filter if the adaptive filter coefficients change sufficiently slowly. The adaptive solution is contrasted with the optimum filter in terms of mean-square error and bit error rate performances. In addition, the proposed solution reconstructs chaotic input signals at the same time. Consequently, it can be applied to multiple signal separation problems as well.

___

  • [1] Stavroulakis P. Chaos Applications in Telecommunications. New York, NY, USA: Taylor & Francis Group, 2006.
  • [2] Abel A, Schwarz W. Chaos communications - principles, schemes and systems analysis. Proceedings of IEEE 2002; 90 (5): 691-710. doi:10.1109/JPROC.2002.1015002
  • [3] Kennedy MP, Kolumban G, Jako Z. Chaotic modulation schemes. In: Kennedy MP, Rovatti R, Setti G (editors). Chaotic Electronics in Telecommunications. Boca Baton, FL, USA: CRC Press, 2000, pp. 151-180.
  • [4] Mazzini G, Rovatti R, Setti G. Interference minimization by auto-correlation shaping in asynchronous DSCDMA systems: chaos-based spreading is nearly optimal. Electronic Letters 1999; 35 (13):1054-1055. doi: 10.1049/el:19990754
  • [5] Cong L, Shaoqian L. Chaotic spreading sequences with multiple access performance better than random sequences. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2000; 47 (3): 394-397. doi: 10.1109/81.841922
  • [6] Chen CC, Yao K. Design of spread spectrum sequences using chaotic dynamical systems and ergodic theory. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2001; 48 (9): 1110-1114. doi: 10.1109/81.948438
  • [7] Gotz M, Kelber K, Schwarz W. Discrete-time chaotic encryption systems. Part I: Statistical design approach. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 1997; 44 (10): 963-970. doi: 10.1109/81.633885
  • [8] Kelber K, Falk T, Schwarz W, Killias T. Discrete-time chaotic encryption systems. Part II: Continuous- and discretevalue realization. In: Proceedings of International Workshop on Nonlinear Dynamics of Electronic Systems; Seville, Spain; 1996. pp. 27-32.
  • [9] Dachselt F, Kelber K, Schwarz W. Discrete-time chaotic encryption systems. Part III: Crypto graphical analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 1998; 45 (9): 883-888. doi: 10.1109/81.721265
  • [10] Chen CY, Chi CY, Chen CH, Feng CC. Batch processing algorithms for blind equalization using higher-order statistics. IEEE Signal Processing Magazine 2003; 20 (1): 25-49. doi: 10.1109/MSP.2003.1166627
  • [11] Via J, Santamaria I, Perez J. Deterministic CCA-based algorithms for blind equalization of FIR-MIMO channels. IEEE Transactions on Signal Processing 2007; 55 (7): 3867-3878. doi: 10.1109/TSP.2007.894273
  • [12] Zhu Z, Leung H. Adaptive blind equalization for chaotic communications systems using extended Kalman filter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2001; 48 (8): 979-989. doi: 10.1109/81.940188
  • [13] Leung H, Xu X, Guo J. Blind equalization for power-line communications using chaos. IEEE Transactions on Power Delivery 2014; 29 (3): 1103-1110. doi: 10.1109/TPWRD.2013.2296834
  • [14] Xie N, Leung H. Blind equalization using a predictive radial basis function neural network. IEEE Transactions on Neural Networks 2005; 16 (3): 709-720. doi: 10.1109/TNN.2005.845145
  • [15] Tsai JS, Lu FC. A new approach for adaptive blind equalization of chaotic communication: the optimal linearization technique. Computers and Mathematics with Applications 2009; 58 (9): 1687-1698. doi: 10.1016/j.camwa.2009.06.054
  • [16] Maoge X, Yaolinag S, Liwei L. Adaptive blind equalization for chaotic communication systems using particle filtering. In: 8th International Conference on Signal Processing; Beijing, China; 2006. pp. 16-20.
  • [17] Xie N, Leung H. Blind identification of autoregressive systems using chaos. IEEE Transactions on Circuits and Systems I: Regular Papers 2005; 52 (9): 1953-1964. doi: 10.1109/TCSI.2005.852488
  • [18] Ciftci M, Williams DB. Channel equalization for multiuser chaotic communications systems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing; Orlando, FL, USA; 2001. pp. 1113-1116.
  • [19] Yoon S, Lee JH, Ryu HG. Chaos communication system using MIMO technique. In: 16th Conference on Advanced Communication Technology (ICACT); Pyeongchang, South Korea; 2014. pp. 579-583.
  • [20] Ciftci M, Williams DB. An optimal estimation algorithm for multiuser chaotic communications systems. In: IEEE International Symposium on Circuits and Systems; Phoenix-Scottsdale, AZ, USA; 2002. pp. 397-400.
  • [21] Hu Z, Feng J. Blind channel equalization algorithm based on dual unscented Kalman filter for chaotic multi-input multi-output communication systems. Transactions of Tianjin University 2012; 18 (1): 33-37. doi: 10.1007/s12209- 012-1621-0
  • [22] Cetinel G, Vural C. Blind source separation and equalization of multiple- input multiple-output FIR channels for chaotic communication systems. In: European Signal Processing Conference; Aalborg, Denmark; 2010. pp. 1135- 1139.
  • [23] Vural C, Cetinel G. Blind equalization of single-input single-output fir channels for chaotic communication systems. Digital Signal Processing; 20 (1): 201-211. doi: 10.1016/j.dsp.2009.06.001
  • [24] Papadias CB, Paulraj A. A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays. IEEE Signal Processing Letters 1997; 4 (6): 178-181. doi: 10.1109/97.586042
  • [25] Johnson JCR, Sethares W A. Telecommunication Breakdown. Upper Saddle River, NJ, USA: Prentice Hall, 2003.
  • [26] Lu Y, Liu KJR. Adaptive source separation and equalization for multiple-input/multiple-output systems. IEEE Transactions on Information Theory 1998; 44 (7): 2864-2876. doi: 10.1109/18.737518