Accurate indoor positioning with ultra-wide band sensors

Ultra-wide band is one of the emerging indoor positioning technologies. In the application phase, accuracy and interference are important criteria of indoor positioning systems. Not only the method used in positioning, but also the algorithms used in improving the accuracy is a key factor. In this paper, we tried to eliminate the effects of off-set and noise in the data of the ultra-wide band sensor-based indoor positioning system. For this purpose, optimization algorithms and filters have been applied to the raw data, and the accuracy has been improved. A test bed with the dimensions of 7.35 m × 5.41 m and 50 cm × 50 cm grids has been selected, and a total of 27,000 measurements have been collected from 180 test points. The average positioning error of this test bed is calculated as 16.34 cm. Then, several combinations of algorithms are applied to raw data. The combination of Big Bang-Big Crunch algorithm for optimization, and then the Kalman Filter have yielded the most accurate results. Briefly, the average positioning error has been reduced from 16.34 cm to 7.43 cm.

___

  • [1] Kaplan E, Hegarty C. Understanding GPS: Principles and Applications. Norwood, MA, USA: Artech House, 2008.
  • [2] Hofmann-Wellenhof B, Lichtenegger H, Collins J. Global Positioning System: Theory and Practice. Wien, Austria: Springer, 2001.
  • [3] Djuknic GM, Richton RE. Geolocation and assisted GPS. Computer 2001; 34(2): 123-125. doi: 10.1109/2.901174
  • [4] Huang H, Gartner G. A Survey of mobile indoor navigation systems. In: Gartner G, Ortag F (Editors). Cartography in Central and Eastern Europe. Springer: Heidelberg, Germany, 2010, 305-319.
  • [5] Liu H, Darabi H, Banerjee P, Liu J. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C Applications and Reviews 2007; 37 (6): 1067-1080. doi: 10.1109/TSMCC.2007.905750
  • [6] Gu YY, Lo A, Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys and Tutorials 2009; 11 (1): 13-32. doi: 10.1109/SURV.2009.090103
  • [7] Ganick A, Ryan D. Method and system for modulating a light source in a light based positioning system using a DC bias. US Patent 2012; Patent No: US 8,334,901 B1.
  • [8] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics 2004; 50 (1): 100-107. doi: 10.1109/TCE.2004.1277847
  • [9] Kumar N, Lourenco N, Spiez M, Aguiar R. Visible light communication systems conception and VIDAS. IETE Technical Review 2008; 25 (6): 359-367. doi: 10.4103/0256-4602.45428
  • [10] Shao WH, Zhao F, Wang C, Luo HY, Zahid TM et al. Location fingerprint extraction for magnetic field magnitude based indoor positioning. Journal of Sensors 2016; 1-16. doi: 10.1155/2016/1945695
  • [11] Galván-Tejada CE, García-Vázquez JP, Brena RF. Magnetic field feature extraction and selection for indoor location estimation. Sensors 2014; 14 (6): 11001-11015. doi: 10.3390/s140611001
  • [12] Gu Y, Chen M, Ren F, Li J. HED: Handling environmental dynamics in indoor WiFi fingerprint localization. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC); Doha, Qatar, 3-6 April 2016. pp. 1-6.
  • [13] Brena RF, García-Vázquez JP, Galván-Tejada CE, Muñoz-Rodriguez D, Vargas-Rosales C et al. Evolution of indoor positioning technologies: A survey, Journal of Sensors 2017; 1-21. doi: 10.1155/2017/2630413
  • [14] Gezici S. A survey on wireless position estimation, Wireless Personal Communications 2008; 44 (3): 263-282. doi: 10.1007/s11277-007-9375-z
  • [15] Bekkali A, Sanson H, Matsumoto M. RFID Indoor positioning based on probabilistic RFID map and Kalman filtering. In: Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2007); White Plains, NY; 2007. pp. 1-7.
  • [16] Fort A, Ryckaert J, Desset C, De Doncker P, Wambacq P, Van Biesen L. Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications 2006; 24 (4): 927- 933. doi: 10.1109/JSAC.2005.863885
  • [17] Hämäläinen M, Hovinen V, Latva-aho M. Survey to ultra-wide band systems. In: European Cooperation in the Field of Scientific and Technical Research–COST 262; Thessaloniki, Greece; 1999.
  • [18] Kopta V, Farserotu J, Enz C. FM-UWB: Towards a robust, low-power radio for body area networks. Sensors 2017; 17 (5): 1043-1063. doi: 10.3390/s17051043
  • [19] De Santis V, Feliziani M, Maradei F. Safety assessment of UWB radio systems for body area network by the (FDTD)-T-2 method. IEEE Transactions on Magnetics 2010; 46 (8): 3245-3248. doi: 10.1109/TMAG.2010.2046478
  • [20] Lee B, Lee Y, Chung W. 3D Navigation real time RSSI-based indoor tracking application. Journal of Ubiquitous Convergence Technology 2008; 2 (2): 67-77.
  • [21] Dag T, Arsan T. Received signal strength based least squares lateration algorithm for indoor localization. Computers and Electrical Engineering 2018; 66: 114-126. doi: 10.1016/j.compeleceng.2017.08.014
  • [22] Kumar P, Reddy L, Varma S. Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In: Proceedings of the 5th IEEE Conference on Wireless Communication and Sensor Networks (WCSN); Allahabad, India; 2009. pp. 1-4.
  • [23] Dardari D, Conti A, Ferner U, Giorgetti A, Win MZ. Ranging with ultrawide bandwidth signals in multipath environments. Proceedings of the IEEE 2009; 97 (2): 404-426. doi: 10.1109/JPROC.2008.2008846
  • [24] Mahfouz M, Kuhn M, Wang Y, Turnmire J, Fathy A. Towards sub-millimeter accuracy in UWB positioning for indoor medical environments. In: Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS); Phoenix, AZ, USA; 2011.
  • [25] Alarifi A, Al-Salman A, Alsaleh M, Alnafessah A, Al-Hadhrami S et al. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016; 16 (5): 707. doi: 10.3390/s16050707
  • [26] Gigl T, Janssen GJM, Dizdarevic V, Witrisal K, Irahhauten Z. Analysis of a UWB indoor positioning system based on received signal strength. In: 4th Workshop on Positioning, Navigation and Communication; Hannover, Germany; 2007. pp. 97-101.
  • [27] Gezici S, Tian Z, Giannakis GB, Kobayashi H, Molisch AF et al. Localization via ultra-wideband radios. IEEE Signal Processing Magazine 2005; 22 (4): 70-84. doi: 10.1109/MSP.2005.1458289
  • [28] Arsan T, Kepez O. Early steps in automated behavior mapping via indoor sensors. Sensors 2017; 17 (12): 2925, 1-22. doi: 10.3390/s17122925
  • [29] Arsan T. Improvement of indoor positioning accuracy of ultra-wide band sensors by using big bang-big crunch optimization method. Pamukkale University Journal of Engineering Sciences 2018; 24 (5): 921-928. doi: 10.5505/pajes.2018.59365
  • [30] Erol OK, Eksin I. A new optimization method: Big bang-big crunch. Advances in Engineering Software 2006; 37 (2): 106-111. doi: 10.1016/j.advengsoft.2005.04.005
  • [31] Labbi Y, Ben Attous D. A hybrid big bang-big crunch optimization algorithm for solving the different economic load dispatch problems. International Journal of System Assurance Engineering and Management 2017; 8 (2): 275-286. doi: 10.1007/s13198-016-0432-4
  • [32] El-Sawy AA, Hussein MA, Zaki EM, Mousa AA. An introduction to genetic algorithms: A survey a practical issues. International Journal of Scientific and Engineering Research 2014; 5 (1): 252-262.
  • [33] Deb K. An introduction to genetic algorithms. Sadhana-Academy Proceedings in Engineering Sciences 1999, 24 (4-5): 293-315. doi: 10.1007/BF02823145
  • [34] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Heidelberg, Germany: Springer-Verlag, 3rd Edition, 1996.
  • [35] Li Q, Dai W, Ji K, Li R. Kalman filter and its application. In: 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS); Tianjin, China; 2015. pp. 74-77.
  • [36] Woods J, Radewan C. Kalman Filtering in two dimensions. IEEE Transactions on Information Theory 1977; 23 (4): 473-482.
  • [37] Salmond D. Target tracking: introduction and Kalman tracking filters. In: IEE International Seminar Target Tracking: Algorithms and Applications; Enschede, Netherlands; 2001. pp. 1-16.
  • [38] Kalman RE. A new approach to linear filtering and prediction problems. Journal of Basic Engineering 1960; 82 (1): 35-45. doi: 10.1115/1.3662552
  • [39] Alfakih AY, Khandani A, Wolkowicz H. Solving Euclidean distance matrix completion problems via semidefinite programming. Computational Optimization and Applications 1999; 12 (1-3): 13-30. doi: 10.1023/A:1008655427845
  • [40] Njima W, Zayani R, Ahriz I, Terre M, Bouallegue R. Beyond stochastic gradient descent for matrix completion based indoor localization. Applied Sciences-Basel 2019; 9 (12): 2414, 1-21. doi: 10.3390/app9122414