A priority-based queuing model approach using destination parameters for real-time applications on IPv6 networks

In the early days of the Internet architecture, the most important aim is to transmit data over packet switched networks. The traditional Internet architecture used in these networks lacks quality of service. However, today, as realtime applications increase, it is needed. There are approaches to improving the quality of service using the flow label field in the Internet Protocol version 6 header. In this study, a novel algorithm that uses destination network parameters to reduce queuing and end-to-end delay is created. A round-robin-based time-aware priority queue new model is used within this algorithm. Data packets using this proposed queue are prioritized with metric values of the destination network. In order to provide end-to-end service quality, the prioritization value is used by placing it in the flow label field. For this purpose, a new approach to the use of this field is proposed. Delay, one of the most important factors affecting quality of service, is reduced with the proposed algorithm and flow label usage approach. As a result, the reduction in delay times between 22 and 39 ms resulted in various improvement rates between 16.79% and 35.13%.

___

  • [1] Paul S, Pandit MK. A QoS-enhanced intelligent stochastic real-time packet scheduler for multimedia IP traffic. Multimedia Tools & Applications 2018; 77 (10): 12725-12748. doi: 10.1007/s11042-017-4912-6
  • [2] Çil A, Akar M, Anarım E. Adaptive optimization of EDCA parameters for improved QoS in multimedia applications. Turkish Journal of Electrical Engineering & Computer Sciences 2012; 20 (2): 1369-1388. doi: 10.3906/elk-1102-1052
  • [3] Keagy S. Integrating Voice and Data Networks. Indianapolis, IN, USA: Cisco Press, 2000.
  • [4] Luca R, Ciotirnae P, Popescu F. Influence of the QoS measures for VoIP traffic in a congested network. International Journal of Computers Communications & Control 2016; 11 (3): 405-413. doi: 10.1016/j.compeleceng.2014.10.017
  • [5] Pinto A, Polo S, Torres J, Macea M. Technology and business benefits of telecommunications infrastructure in frame relay based on the isp (internet service provideren). Ciencia E Ingenieria 2018; 39 (1): 3-12.
  • [6] Hanif MK, Aamir SM, Talib R, Saeed Y. Analysis of network traffic congestion control over TCP protocol. International Journal Of Computer Science & Network Security 2017; 17 (7): 21-30.
  • [7] Karakus M, Durresi A. An economic framework for analysis of network architectures: SDN and MPLS cases. Journal of Network & Computer Applications 2019; 136: 132-146. doi: 10.1016/j.jnca.2019.02.032
  • [8] Nasrallah A, Thyagaturu AS, Alharbi Z, Wang CX, Shao X et al. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Communications Surveys & Tutorials 2018; 21 (1): 88-145. doi: 10.1109/COMST.2018.2869350
  • [9] Dumka A, Mandoria HL, Fore V, Dumka K. Implementation of QoS algorithm in integrated services (IntServ) MPLS network. In: INDIACom’15 2nd International Conference on Computing for Sustainable Global Development; New Delhi, India; 2015. pp 1048-1050.
  • [10] Xiao Y, Qu G, Kim K. A new DiffServ edge router with controlled-UDP. Chinese Journal of Electronics 2015; 24 (1): 176-180. doi:10.1049/cje.2015.01.029
  • [11] Garg R, Sharma S. Modified and improved IPv6 header compression (MIHC) scheme for 6LoWPAN. Wireless Personal Communications 2018; 103 (3): 2019-2033. doi:10.1007/s11277-018-5894-z
  • [12] Sanchez LYB, Aguilar JJP. An approach to support traffic engineering in IPv6 networks based on IPv6 facilities. Telecommunication Systems 2019; 72 (1): 11-27. doi:10.1007/s11235-018-00543-7
  • [13] Hassan R, Jabbar R. End-to-end (e2e) quality of service (QoS) for IPv6 video streaming. In: ICACT’17 19th International Conference On Advanced Communications Technology; Pyeongchang, South Korea; 2017. pp 1-4.
  • [14] Chakravorty S. Challenges of IPv6 flow label implementation. In: MILCOM 2008 IEEE Military Communications Conference; San Diego, CA, USA; 2008. pp 2496-2501.
  • [15] Tang X, Tang J, Huang GB, Siew CK. QoS provisioning using IPv6 flow label in the Internet. In: Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia; Singapore, Singapore; 2003. pp 1253-1257.
  • [16] Sanchez LYB, Aguilar JJP. Review of approaches for the use of the label flow of IPv6 header. IEEE Latin America Transactions 2014; 12 (8): 1602-1607. doi: 10.1109/TLA.2014.7014534 [17] Yi K, Wang ZJ. Research on IPv6 Label Switching Architecture. Computer Technology and Development 2006; 6 : 227-229.
  • [18] Hailu DH. Ring optical packet switched (OPS) network: Quality of service (QoS) and traffic model. Optical Switching & Networking 2018; 28: 36-42. doi:10.1016/j.osn.2017.12.005
  • [19] Zhao XY, Chen W. Non-orthogonal multiple access for delay-sensitive communications: A cross-layer approach. IEEE Transactions on Communications 2019; 67 (7): 5053-5068. doi:10.1109/TCOMM.2019.2904577 [20] Chiariotti F, Kucera S, Zanella A, Claussen H. Analysis and design of a latency control protocol for multi-path data delivery with pre-defined QoS guarantees. IEEE-ACM Transactions on Networking 2019; 27 (3): 1165-1178. doi:10.1109/TNET.2019.2911122
  • [21] Moh ANA, Abdullah RM, Abualkishik AZ, Ali BB, Alwan AA. Algorithm for enhancing the QoS of video traffic over wireless mesh networks. International Journal of Advanced Computer Science & Applications 2019; 10 (4): 451-456.
  • [22] Ren QQ, Chen J, Chen B, Jin L. A video streaming transmission scheme based on frame priority in device-to-device multicast networks. IEEE Access 2019; 7: 20187-20198. doi: 10.1109/ACCESS.2019.2897647
  • [23] Fakrudeen M, Yousef S, Tapaswi S, Patnaik KK, Cole M. Voice performance analysis using voice codec by packet fragmentation and contention free periods in wireless networks. International Journal of System Assurance Engineering & Management 2017; 8 (2): 758-764. doi:10.1007/s13198-016-0517-0
  • [24] Malekzadeh M, Ghani AAA. Hybrid LTE-802.11AC network: Qos optimality evaluation of The voip codecs techniques. Journal Of Engineering Science And Technology 2019; 14 (1): 279-290.
  • [25] Wu WH, Liu J, Huang T. Decoupled delay and bandwidth centralized queue-based QoS scheme in openflow networks. China Communications 2019; 16 (7): 70-82.
  • [26] Canete E, Chen J, Diaz M, Rubio B, Troya JM. Performance analysis of wireless sensor networks and priority queueing systems. International Journal of Sensor Networks 2019; 30 (2): 126-139. doi:10.1504/IJSNET.2019.099474
  • [27] Chuprikov P, Nikolenko SI, Davydow A, Kogan K. Priority queueing for packets with two characteristics. IEEE-ACM Transactions on Networking 2018; 26 (1): 342-355. doi:10.1109/TNET.2017.2782771
  • [28] Rukmani P, Ganesan R. Adaptive modified low latency queuing algorithm for real time traffic in wimax networks. Journal of Engineering Science & Technology 2017; 12 (9): 2551-2566.
  • [29] Haider F, Chaudary MH, Naveed MS, Asif M. IPv6 QoS for multimedia applications: A performance analysis. In: ICSCA 2019 8th International Conference on Software and Computer Applications; Penang, Malaysia; 2015. pp 501-504. doi:10.1145/3316615.3316653
  • [30] Tarasiuk H, Hanczewski S, Kaliszan A, Szuman R, Ogrodowczyk L et al. The IPv6 QoS system implementation in virtual infrastructure. Telecommunication Systems 2016; 61 (2): 221-233. doi: 10.1007/s11235-015-9996-6
  • [31] Bouras C, Gkamas A, Primpas D, Stamos K. Performance evaluation of the impact of QoS mechanisms in an IPv6 network for IPv6-capable real-time applications. Journal of Network and Systems Management 2004; 12 (4): 463-483. doi: 10.1007/s10922-004-0672-5
  • [32] Mohamed M, Moumkine N, Adib A. An IPv6 flow label based approach for IPTV quality of service. In: WINCOM’17 International Conference on Wireless Networks and Mobile Communications; Rabat, Morocco; 2017. pp 66-72.
  • [33] El Khadiri K, Labouidya O, Elkamoun N, Hilal R. Performance evaluation of IPv4/IPv6 transition mechanisms for real-time applications using OPNET modeler. International Journal of Advanced Computer Science & Applications 2018; 9 (4): 387-392.
  • [34] Filsfils C, Evans J. Engineering a multiservice IP backbone to support tight SLAs. Computer Networks - The International Journal of Computer & Telecommunications Networking 2002; 40 (1): 131-148. doi: 10.1016/S1389- 1286(02)00271-2
  • [35] Sarmiento OP. NS3-based training system for learning RIPng for IPv6. Ingenieria Y Competitividad 2017; 19 (1): 168-176.
  • [36] Iliadis I, Scotton P, Bauer D. Dynamic transition matrix generation for topology aggregation. Computer Communications 2002; 25 (17): 1497-1512. doi: 10.1016/S0140-3664(02)00056-7
  • [37] Li F, Cao J, Wang X, Sun Y. A QoS guaranteed technique for cloud applications based on software defined networking. IEEE Access 2017; 5: 21229-21241. doi:10.1109/ACCESS.2017.2755768