A fully batteryless multiinput single inductor single output energy harvesting Architecture

Conventional energy architectures that utilize multiple ambient energy sources are initiated either by an external power supply or through the addition of an extra power source e.g., battery to the architecture. However, these interventions compromise the goal of a self-sustainable energy harvesting system. Moreover, conventional architectures are not effective in situations where space is limited e.g., an artificial heart or when access to this space is difficult e.g., human implantable devices , due to their large battery size. Thus, conventional energy combiner circuits that use multiple energy sources are not well suited for supplying power to most applications. This paper presents a fully batteryless energy combiner architecture with a single inductor for the use of multiple ambient energy sources, including a solar cell and a microbial fuel cell. For each energy source, an auxiliary circuit i.e. a charge pump is implemented in order to provide a power supply to a digital control circuit, which consecutively connects each ambient energy source to a power converter. This novel architecture is completely self-starting and requires no additional extra power source or battery. This architecture has been designed and verified using a 0.13-$\mu$m CMOS process and a peak end-to-end efficiency of 79.33% for two ambient sources is achieved. This proposed system is applicable to numerous loads utilized in energy harvesting systems.

___

  • [1] Meehan A, Gao H, Lewandowski Z. Energy harvesting with microbial fuel cell and power management system. IEEE Transactions on Power Electronics 2011; 26 (1): 176-181. doi: 10.1109/TPEL.2010.2054114
  • [2] Ashraf M, Masoumi N. A thermal energy harvesting power supply with an internal startup circuit for pacemakers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2016; 24 (1): 26-37. doi: 10.1109/TVLSI.2015.2391442
  • [3] Yeknami A, Wang X, Jeerapan I, Imani S, Nikoofard A et al. A 0.3-V CMOS biofuel-cell-powered wireless glucose/lactate biosensing system. IEEE Journal of Solid-State Circuits 2018; 53 (11): 3126-3139. doi: 10.1109/JSSC.2018.2869569
  • [4] Niitsu K, Kobayashi A, Nishio Y, Hayashi K, Ikeda K et al. A self-powered supply-sensing biosensor platform using bio fuel cell and low-voltage, low-cost CMOS supply-controlled ring oscillator with inductive-coupling transmitter for healthcare IOT. IEEE Transactions on Circuits and Systems I: Regular Papers 2018; 65 (9): 2784-2796. doi: 10.1109/TCSI.2018.2791516
  • [5] Umaz R, Garrett C, Qian F, Li B, Wang L. A power management system for multianode benthic microbial fuel cells. IEEE Transactions on Power Electronics 2017; 32 (5): 3562-3570. doi: 10.1109/TPEL.2016.2585020
  • [6] Das A, Gao Y, Kim TTH. A 220-mV power-on-reset based self-starter with 2-nW quiescent power for thermoelectric energy harvesting systems. IEEE Transactions on Circuits and Systems I: Regular Papers 2017; 64 (1): 217-226. doi: 10.1109/TCSI.2016.2606122
  • [7] Chew KWR, Sun Z, Tang H, Siek L. A 400 nW single-inductor dual-input–tri-output DC–DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. In: 2011 IEEE International SolidState Circuits Conference; San Francisco, CA, USA; 2011. pp. 68-69.
  • [8] Qiu Y, Van Liempd C, het Veld BO, Blanken PG, Van Hoof C. 5µW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In: 2011 IEEE International Solid-State Circuits Conference; San Francisco, CA, USA; 2011. pp. 118-120.
  • [9] Dini M, Romani A, Filippi M, Tartagni M. A nanocurrent power management IC for low-voltage energy harvesting sources. IEEE Transactions on Power Electronics 2016; 31 (6): 4292-4304. doi: 10.1109/TPEL.2015.2472480
  • [10] Dell’Anna F, Dong T, Li P, Yumei W, Yang Z et al. State-of-the-art power management circuits for piezoelectric energy harvesters. IEEE Circuits and Systems Magazine 2018; 18 (3): 27-48. doi: 10.1109/MCAS.2018.2849262
  • [11] Mansano A, Bagga S, Serdijn W. A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers 2013; 60 (7): 1959-1966. doi: 10.1109/TCSI.2012.2230499
  • [12] Carli D, Brunelli D, Benini L, Ruggeri M. An effective multi-source energy harvester for low power applications. In: 2011 Design, Automation Test in Europe; Grenoble, France; 2011. pp. 1-6.
  • [13] Tan YK, Panda SK. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics 2011; 58 (9): 4424-4435. doi: 10.1109/TIE.2010.2102321
  • [14] Colomer-Farrarons J, Miribel-Catala P, Saiz-Vela A, Samitier J. A multiharvested self-powered system in a low-voltage low-power technology. IEEE Transactions on Industrial Electronics 2011; 58 (9): 4250-4263. doi: 10.1109/TIE.2010.2095395
  • [15] Umaz R, Wang L. An energy combiner design for multiple microbial energy harvesting sources. In: 2017 the ACM Great Lakes Symposium on VLSI; Banff, Alberta, Canada; 2017. pp. 443-446.
  • [16] Bandyopadhyay S, Chandrakasan AP. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE Journal of Solid-State Circuits 2012; 47 (9): 2199-2215. doi: 10.1109/JSSC.2012.2197239
  • [17] Shi C, Miller B, Mayaram K, Fiez T. A multiple-input boost converter for low-power energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs 2011; 58 (12):827-831. doi: 10.1109/TCSII.2011.2173974
  • [18] Kang T, Kim S, Hyoung C, Kang S, Park K. An energy combiner for a multi-input energy-harvesting system. IEEE Transactions on Circuits and Systems II: Express Briefs Sept 2015; 62 (9):911-915. doi: 10.1109/TCSII.2015.2435231
  • [19] Dini M, Romani A, Filippi M, Bottarel V, Ricotti G et al. A nanocurrent power management IC for multiple heterogeneous energy harvesting sources. IEEE Transactions on Power Electronics 2015; 30 (10): 5665-5680. doi: 10.1109/TPEL.2014.2379622
  • [20] Liu C, Lee H, Liao P, Chen Y, Chung M et al. Dual-source energy-harvesting interface with cycle-by-cycle source tracking and adaptive peak-inductor-current control. IEEE Journal of Solid-State Circuits 2018; 53 (10): 2741–2750. doi: 10.1109/JSSC.2018.2844358
  • [21] Katic J, Rodriguez S, Rusu A. A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Transactions on Power Electronics 2018; 33 (5): 4125-4134. doi: 10.1109/TPEL.2017.2712668
  • [22] Amin SS, Mercier PP. MISIMO: a multi-input single-inductor multi-output energy harvesting platform in 28-nm FDSOI for powering net-zero-energy systems. IEEE Journal of Solid-State Circuits 2018; 53 (12): 3407-3419. doi: 10.1109/JSSC.2018.2865467
  • [23] Park C, Chou PH. Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks; Reston, VA, USA; 2006. pp. 168-177.
  • [24] Patoka M. Fundamentals of power system ORing. Power Management Design Lines EE Times, March 2007.
  • [25] Park C, Chou PH. Power utility maximization for multiple-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design; New York, NY, USA; 2004. pp. 168-173.
  • [26] Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M. Design considerations for solar energy harvesting wireless embedded systems. In: Fourth International Symposium on Information Processing in Sensor Networks; Los Angeles, CA, USA; 2005. pp. 457-462.
  • [27] Jiang X, Polastre J, Culler D. Perpetual environmentally powered sensor networks. In: Fourth International Symposium on Information Processing in Sensor Networks; Los Angeles, CA, USA; 2005. pp. 463-468.
  • [28] Yu G, Chew KWR, Sun ZC, Tang H, Siek L. A 400 nW single-inductor dual-input–tri-output DC–DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE Journal of SolidState Circuits 2015; 50 (11): 2758-2772. doi: 10.1109/JSSC.2015.2476379
  • [29] Kim S, Rincon-Mora GA. 23.4 dual-source single-inductor 0.18 µm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control. In: 2014 IEEE International Solid-State Circuits Conference; San Francisco, CA, USA; 2014. pp. 400-401.
  • [30] Umaz R, Wang L. Design of an inductorless power converter with maximizing power extraction for energy harvesting. International Journal of High Speed Electronics and Systems 2018; 27 (01n02): 1840007.
  • [31] Umaz R. Power management systems for biomass-based energy harvesting. PhD, University of Connecticut, Storrs, CT, USA, 2018.
  • [32] Chatterjee A, Keyhani A. Thevenin’s equivalent of photovoltaic source models for MPPT and power grid studies. In: 2011 IEEE Power and Energy Society General Meeting; Detroit, MI, USA; 2011. pp. 1-7.