A compact wideband series linear dielectric resonator array antenna

This communication presents a miniaturised series linear wideband array of notched rectangular dielectric resonator antennas that operate in the band IEEE 802.11a. Three dielectric resonators DRs were excited through the aperture slots coupled with a microstrip feed. To improve the array gain, the aperture slots were placed based on the attributes related to the standing-wave ratio on a short-ended microstrip feeder to obtain optimal joint power for the DRs, while the bandwidth was improved using the notched rectangular DRs. An equivalent impedance model of the proposed array was postulated to provide physical insight into the array resonance behaviour. The impedance model was simulated using the Agilent Advanced Design System software and optimised to determine the DRs’ dimensions. Then the array prototype was simulated and experimentally implemented. The maximum measured gain across a 1.68-GHz bandwidth was found to be 8.28 dBi. The antenna structure measured approximately 60 × 40mm, thereby making it a good component for wireless communication systems.

___

  • [1] Long S, McAllister M, Shen L. The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation 1983; 25 (3): 406-412. doi: 10.1109/TAP.1983.1143080
  • [2] Petosa A, Ittipiboon A, Cuhaci M, Larose R. Bandwidth improvement for a microstrip-fed series array of dielectric resonator antennas. Electronics Letters 1996; 32 (7): 608-609. doi: 10.1049/el:19960451
  • [3] Lee R, Simons R. Bandwidth enhancement of dielectric resonator antennas. Proceedings of IEEE Antennas and Propagation Society International Symposium; Ann Arbor, MI, USA; 1993, pp. 1500-1503.
  • [4] Eshrah I, Kishk A, Yakovlev A, Glisson A. Theory and implementation of dielectric resonator antenna excited by a waveguide slot. IEEE Transactions on Antennas and Propagation 2005; 53 (1): 483-494. doi: 10.1109/TAP.2004.838782
  • [5] Al-Zoubi A, Kishk A, Glisson A. Analysis and design of a rectangular dielectric resonator antenna fed by dielectric image line through narrow slots. Progress in Electromagnetics Research 2007; 77: 379-390. doi: 10.2528/PIER07082504
  • [6] Petosa A, Larose R, Ittipiboon A, Cuhaci M. Microstrip-fed array of multisegment dielectric resonator antennas. IEE Proceedings - Microwaves, Antennas and Propagation 1997; 144 (6): 472-476. doi: 10.1049/ip-map:19971375
  • [7] Kishk A, Ahn B, Kajfez B. Broadband stacked dielectric resonator antennas. Electronics Letters 1989; 25 (18): 1232-1233. doi: 10.1049/el:19890826
  • [8] Antar Y, Fan Z. Theoretical investigation of aperture-coupled rectangular dielectric resonator antenna. IEE Proceedings - Microwaves, Antennas and Propagation 1996; 143 (2): 113-118. doi: 10.1049/ip-map:19960269
  • [9] Shum S, Luk K. Stacked annular-ring dielectric resonator antenna excited by axi-symmetric coaxial probe. IEEE Transactions on Antennas and Propagation 1995; 43 (8): 889-892. doi: 10.1109/8.402212
  • [10] Coulibaly Y, Denidni TA, Talbi L. Wideband impedance bandwidth hybrid dielectric resonator antenna for X-band applications. IIEEE Antennas and Propagation Society International Symposium; Albuquerque, NM, USA; 2006. pp. 2429-2432.
  • [11] Walsh A, DeYong C, Long S. An investigation of stacked and embedded cylindrical dielectric resonator antennas. IEEE Antennas and Wireless Propagation Letters 2006; 5: 130-133. doi: 10.1109/LAWP.2006
  • [12] Kishk A. Experimental study of broadband embedded dielectric resonator antennas excited by a narrow slot. IEEE Antennas and Wireless Propagation Letters 2005; 4: 79-81. doi: 10.1109/LAWP.2005.844648
  • [13] Rao Q, Denidni T, Sebak A. Broadband compact stacked T-shaped DRA with equilateral-triangle cross sections. IEEE Microwave and Wireless Components Letters 2006; 16 (1): 7-9. doi: 10.1109/LMWC.2005.861360
  • [14] Denidni T, Rao Q, Sebak A. Broadband L-shaped dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters 2005; 4: 453-454. doi: 10.1109/LAWP.2005.860198
  • [15] Junker G, Kishk A, Glisson A, Kajfez D. Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode. Electronics Letters 1994; 30 (2): 97-98. DOI: 10.1049/el:19940114
  • [16] Ittipiboon A, Cuhaci M, Mongia R, Bhartia P, Antar Y. Aperture fed rectangular and triangular dielectric resonators for use as magnetic dipole antennas. Electronics Letters 1993; 29 (23): 2001-2002. doi: 10.1109/TAP.1986.1143929
  • [17] Ittipiboon A. An investigation of a novel broadband dielectric resonator antenna. IEEE Antennas and Propagation Society International Symposium; Baltimore, MD, USA; 1996. pp. 2038-2041.
  • [18] Almpanis G, Fumeaux C, Vahldieck R. The trapezoidal dielectric resonator antenna. IEEE Transactions on Antennas and Propagation 2008; 56 (9): 2810-2816. doi: 10.1109/TAP.2008.928787
  • [19] Kishk A, Yin Y, Glisson A. Conical dielectric resonator antennas for wideband applications. IEEE Transactions on Antennas and Propagation 2002; 50 (4): 569-474. doi: 10.1109/TAP.2002.1003382
  • [20] Zhang X, Lai Q, Ma X. Novel hexagon shaped dielectric resonator antenna array for wideband applications. 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communication; Beijing, China; 1985. pp. 639-642.
  • [21] Pozar D. Microstrip antenna aperture-coupled to a microstripline. Electronics Letters 1985; 21 (2): 49-50. doi: 10.1049/el:19850034
  • [22] Pozar D. A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas. IEEE Transactions on Antennas and Propagation 1986; 34 (12): 1439-1446. doi: 10.1109/TAP.1986.1143785
  • [23] Sullivan P, Schaubert D. Analysis of an aperture coupled microstrip antenna. IEEE Transactions on Antennas and Propagation 1986; 34 (8): 977-984. doi: 10.1109/TAP.1986.1143929
  • [24] Mongia R, Bhartia P. Dielectric resonator antennas — a review and general design relations for resonant frequency and bandwidth. International Journal of RF and Microwave Computer-Aided Engineering 1994; 4 (3): 230-247. doi: 10.1002/mmce.4570040304
  • [25] Collin E. Foundations for Microwave Engineering. New York, NY, USA: McGraw-Hill, 1992.
  • [26] Junker G, Kishk A, Glisson A. Input impedance of aperture-coupled dielectric resonator antennas. IEEE Transactions on Antennas and Propagation 1996; 44 (5): 600. doi: 10.1109/8.496245
  • [27] Mirshekar-Syahkal D. Spectral Domain Method for Microwave Integrated Circuits. New York, NY, USA: Wiley, 1990.
  • [28] Akhavan H, Mirshekar-Syahkal D. Approximate model for microstrip fed slot antennas. IEEE Electronics Letters 1994; 30 (23): 600. doi: 10.1049/el:19941300
  • [29] Akhavan H, Mirshekar-Syahkal D. A simple technique for evaluation of input impedance of microstrip-fed slot antennas. Ninth International Conference on Antennas and Propagation, ICAP ’95; Eindhoven, Netherlands; 1995. pp. 265-268.
  • [30] James J, Henderson A. High-frequency behaviour of microstrip open-circuit terminations. Microwaves, Optics and Acoustics 1979; 3 (5): 205-218. doi: 10.1049/ij-moa.1979.0046
  • [31] Lin J, Shen W, Yang K. A low-sidelobe and wideband series-fed linear dielectric resonator antenna array. Antennas and Wireless Propagation Letters 2017; 16: 513-516. doi: 10.1109/LAWP.2016.2586579
  • [32] Nikkhah M, Mohassel J, Kishk A. A low sidelobe and wideband series-fed dielectric resonator antenna array. 21st Iranian Conference on Electrical Engineering (ICEE); Mashhad, Iran; 2013. pp. 1-3