The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaraş region, southern Turkey

The regionally important dismembered ophiolitic sequence from the southern Kahramanmaraş region, located along the Arabian-Eurasian collision zone in southeastern Turkey, contains harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and ophiolite-related metamorphic rocks. The ultramafic-mafic cumulate rocks are composed of wehrlite, lherzolite, olivine websterite, olivine gabbronorite, olivine gabbro and gabbro. The crystallization order of the cumulus phases, the presence of high Ca-plagioclase (An83-94), highly magnesian clinopyroxene (Mg#78-93), olivine (Mg#71-91) and their coexistence in the ultramafic-mafic cumulate rocks indicate a suprasubduction zone (SSZ) environment and suggest that the cumulates were derived from an island arc tholeiitic (IAT) magma. The isotropic gabbros are mainly represented by hornblende gabbro, gabbro and diorite rocks. The major and trace element geochemistry of the isotropic gabbros reveals two different magma types. The first group is characterized by low TiO2 (0.91-1.52 wt.%) and Zr (35-79 ppm), and REEs exhibiting flat to slightly depleted LREE (LaN/YbN = 0.38 to 0.67) patterns, geochemically similar to island arc tholeiites. The second group is characterized by higher TiO2 (2.67-3.87) and Zr (176-351 ppm) and displays significant LREE enrichment (LaN/YbN = 10.9 to 14.5) patterns, which are geochemically similar to oceanic island basalt (OIB). Metamorphic sole rocks are represented by alkali amphibolites and are similar to OIB. All the evidence suggests that the ophiolitic rocks of the southern Kahramanmaraş region are associated with different types of magma generation and were emplaced onto the Arabian passive margin along the southern branch of the Neotethys oceanic basin during the Late Cretaceous.

The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaraş region, southern Turkey

The regionally important dismembered ophiolitic sequence from the southern Kahramanmaraş region, located along the Arabian-Eurasian collision zone in southeastern Turkey, contains harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and ophiolite-related metamorphic rocks. The ultramafic-mafic cumulate rocks are composed of wehrlite, lherzolite, olivine websterite, olivine gabbronorite, olivine gabbro and gabbro. The crystallization order of the cumulus phases, the presence of high Ca-plagioclase (An83-94), highly magnesian clinopyroxene (Mg#78-93), olivine (Mg#71-91) and their coexistence in the ultramafic-mafic cumulate rocks indicate a suprasubduction zone (SSZ) environment and suggest that the cumulates were derived from an island arc tholeiitic (IAT) magma. The isotropic gabbros are mainly represented by hornblende gabbro, gabbro and diorite rocks. The major and trace element geochemistry of the isotropic gabbros reveals two different magma types. The first group is characterized by low TiO2 (0.91-1.52 wt.%) and Zr (35-79 ppm), and REEs exhibiting flat to slightly depleted LREE (LaN/YbN = 0.38 to 0.67) patterns, geochemically similar to island arc tholeiites. The second group is characterized by higher TiO2 (2.67-3.87) and Zr (176-351 ppm) and displays significant LREE enrichment (LaN/YbN = 10.9 to 14.5) patterns, which are geochemically similar to oceanic island basalt (OIB). Metamorphic sole rocks are represented by alkali amphibolites and are similar to OIB. All the evidence suggests that the ophiolitic rocks of the southern Kahramanmaraş region are associated with different types of magma generation and were emplaced onto the Arabian passive margin along the southern branch of the Neotethys oceanic basin during the Late Cretaceous.

___

  • Alabaster, T., Pearce, J.A. & Malpas, J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contributions to Mineralogy and Petrology 81, 168–183.
  • Aldanmaz, E. 2012. Trace element geochemistry of primary mantle minerals in spinel-peridotites from polygenetic MOR–SSZ suites of SW Turkey: constraints from an LA-ICP-MS study and implications for mantle metasomatism. Geological Journal 47, 59–76.
  • Aldanmaz, E., Schmidt, M.W., Gourgaud, A. & Meisel, T. 2009. Mid-ocean ridge and suprasubduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113, 691–708.
  • Aldanmaz, E., Yalınız, M.K., Güçtekin, A. & GöncüoĞlu, M.C. 200 Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine 145, 37–54. Al-Riyami, K., Robertson, A.H.F., Dixon, J. & Xenophontos, C. 2002.
  • Origin and emplacement of the Late Cretaceous Baer-Bassit ophiolite and its metamorphic sole in NW Syria. Lithos 65, 225–260. Arai, S., Kadoshima, K. & Morishita, T. 2006. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. Journal of the Geological Society of London 163, 1–11.
  • Arculus, R.J. & Wills, K.J.A. 1980. The petrology of plutonic blocks and inclusions from Lesser Antilles island arc. Journal of Petrology 21, 743–799.
  • Atan, O.R. 1969. Eğribucak-Karacaören (Hassa)-Ceylanlı-Dazevleri (Kırıkhan) arasındaki Amanos dağlarının jeolojisi [The geology of the Amanos mountains among the Eğribucak-Karacaören (Hassa)-Ceylanlı-Dazevleri (Kırıkhan)]. General Directorate of Mineral Research and Exploration (MTA) Publication: 139.
  • Bağcı, U. 2004. Kızıldağ (Hatay) ve Tekirova (Antalya) Ofiyolitlerinin Jeokimyası ve Petrolojisi [Geochemistry and Petrology of The Kızıldağ (Hatay) and Tekirova (Antalya) Ophiolites]. PhD Thesis, Çukurova University, Adana-Turkey (in Turkish with English abstract).
  • Bağcı, U. & Parlak, O. 2009. Petrology of the Tekirova (Antalya) ophiolite (Southern Turkey): evidence for diverse magma generations and their tectonic implications during Neotethyansubduction. International Journal of Earth Sciences 98, 387– 40
  • Bağcı, U., Parlak, O. & Höck, V. 2005. Whole rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Mineralogical Magazine 69, 39–62.
  • Bağcı, U., Parlak, O. & Höck, V. 2006. Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (southern Turkey). Geological Journal 41, 193–219.
  • Bağcı, U., Parlak, O. & Höck, V. 2008. Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite southern Turkey. Turkish Journal of Earth Sciences 17, 43–71.
  • Ballantyne, P. 1992. Petrology and geochemistry of the plutonic rocks of the Halmahera ophiolite, eastern Indonesia, an analogue of modern oceanic forearcs. In: Parson, L.M., Murton, B.J. & Browning, P. (eds), Ophiolites and Their Modern Oceanic Analogues. Geological Society, London, Special Publication 60, 179–202.
  • Beard, J.S. 1986. Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14, 848–851.
  • Bébien, J., Dimo-Lahitte, A., Vergély, P., Insergueix-Filippi, D. & Dupeyrat, L. 2000. Albanian ophiolites. I - Magmatic and metamorphic processes associated with the initiation of a subduction. Ofioliti 25, 39–45.
  • Beccaluva, L., Coltorti, M., Giunta, G. & Siena, F. 2004. Tethyan vs Cordilleran ophiolites: a reappraisal of distinctive tectonomagmatic features of suprasubduction complexes in relation to the subduction mode. Tectonophysics 393, 163–174.
  • Beccaluva, L., Coltorti, M., Saccani, E. & Siena, F. 2005. Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide–Hellenide Subpelagonian zone. The Island Arc 14, 551–563.
  • Beccaluva, L., Macciotta, G., Piccardo, G.B. & Zeda, O. 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology 77, 165–182.
  • Beyarslan, M. & Bingöl, A.F. 2000. Petrology of a supra-subduction zone ophiolite (Elazığ, Turkey). Canadian Journal of Earth Sciences 37, 1411–1424.
  • Borisenko, L.F. 1967. Trace elements in pyroxenes and amphiboles from ultramafic rocks of the Urals. Mineralogical Magazine 36, 403–410.
  • Bortolotti, V., Carras, N., Chiari, M., Fazzuoli, M., Marcucci, M., Nirta, G., Principi, G. & Saccani, E. 2009. The ophiolite-bearing mélange in the Early Tertiary Pindos flysch of Etolia (Central Greece). Ofioliti 34, 83–94.
  • Brey, G.P. & Köhler, T. 1990. Geothermometry in four-phase lherzolites II. Journal of Petrology 31, 1353–1378.
  • Burns, L.E. 1985. The Border Ranges ultramafic and mafic complex, south central Alaska: cumulate fractionates of island arc volcanics. Canadian Journal of Earth Sciences 22, 1020–1038.
  • Çelik, Ö.F. 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB-type magma generation following slab break–off. Geological Magazine 144, 849–866.
  • Çelik, Ö.F. & Delaloye, M.F. 2003. Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal 38, 235–256.
  • Çelik, Ö.F. & Delaloye, M.F. 2006. Characteristics of ophiolite-related metamorphic rocks in the Beysehir ophiolitic mélange (Central
  • Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences 26, 461–476. Çolakoğlu, A.R., Sayit, K., Günay, K. & Göncüoğlu M. 2012. Geochemistry of mafic dykes from the Southeast Anatolian ophiolites, Turkey: implications for an intra-oceanic arc–basin system. Lithos 132–133, 113–126.
  • Dare, S.A.S., Pearce, J.A., McDonald, I. & Styles, M.T. 2009. Tectonic discrimination of peridotites using fO 2
  • –Cr# and Ga–Ti–Fe III systematic in chrome–spinel. Chemical Geology 261, 199–216. DeBari, S.M. & Coleman, R.G. 1989. Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research 94, 4373–4391.
  • Dilek, Y. & Flower, M.F.J. 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. In: Dilek, Y. & Robinson, P.T. (eds), Ophiolites in Earth History. Geological Society, London, Special Publications 218, 43–68.
  • Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387– 4
  • Dilek, Y. & Moores, E.M. 1990. Regional tectonics of the eastern Mediterranean ophiolites. In: Malpas, J., Moores, E., Panayiotou, A. & Xenophontos, C. (eds), Proceeding of Troodos Ophiolite Symposium. Cyprus Geological Survey Department, 295–309.
  • Dilek, Y. & Thy, P. 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kızıldağ (Turkey) ophiolite: model for multistage early arc–forearc magmatism in Tethyan subduction factories. Lithos 113, 68–87.
  • Dilek, Y., Thy, P., Hacker, B. & Grundvig, S. 1999. Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin 111, 1192–1216.
  • Dubertret, L. 1955. Géologie des roches vertes du nord-ouest de la Syrie et du Hatay (Turquie). Notes Mémoires Moyen-Orient 6, 227.
  • Duncan, R.A. & Green, D.H. 1980. Role of multi-stage melting in the formation of oceanic crust. Geology 8, 22–26.
  • Elitok, Ö. & Drüppel, K. 2008. Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir–Hoyran ophiolite (SW-Turkey). Lithos 100, 322–353.
  • Floyd, P.A., Göncüoğlu, M.C., Winchester, J.A. & Yalınız, M.K. 2000. Geochemical character and tectonic environment of Neotethyan ophiolitic fragments and metabasites in the Central Anatolian Crystalline Complex, Turkey. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surroundings Area. Geological Society, London, Special Publications 173, 183–202.
  • Foden, J.D. 1983. The petrology of the calcalkaline lavas of Rindjani volcano, East Sunda Arc: model for island arcs. Journal of Petrology, 24, 98–130.
  • Fujimaki, H. 1986. Fractional crystallization of the basaltic suite of Usa volcano, southwest Hokkaido, Japan, and its relationships with the associated felsic suite. Lithos 19, 129–140.
  • Göncüoğlu, M.C., Sayit, K. & Tekin, U.K. 2010. Oceanization of the northern Neotethys: geochemical evidence from ophiolitic mélange basalts within the İzmir–Ankara suture belt, NW Turkey. Lithos 116, 175–187.
  • Green, N.L. 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87, 23–49.
  • Grove, T.L. & Baker MB. 1984. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Journal of Geophysical Research 89, 3253–3274.
  • Gül, M. 1987. Kahramanmaraş bölgesinin jeolojisi ve petrol olanakları [The geology and petroleum possibilities of Kahramanmaraş]. TPAO Report No. 2359, Ankara.
  • Gül, M., Gürbüz, K. & Cronin, B.T. 2011. Provenance of the northern part of the Kahramanmaraş Peripheral Foreland Basin (Miocene, S Turkey). Journal of Asian Earth Sciences 40, 475–495.
  • Gust, D.A. & Johnson, R.W. 1981. Amphibole bearing cumulates from Boisa Island, Papua New Guinea: evaluation of the role of fractional crystallization in an andesitic volcano. Journal of Geology 89, 219–232.
  • Harigane, Y., Michibayashi, K. & Ohara, Y. 2011. Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea. Lithos 124, 185–199.
  • Hébert, R. 1982. Petrography and mineralogy of oceanic peridotites and gabbros some comparisons with ophiolite examples. Ofioliti 2/3, 299–324.
  • Hébert, R. & Laurent, R. 1990. Mineral chemistry of the plutonic section of the Troodos ophiolite: new constraints for genesis of arc-related ophiolites. In: Malpas, J., Moores, E., Panayiotou, A. & Xenophontos, C. (eds), Proceedings of Troodos Ophiolite Symposium. Cyprus Geological Survey Department, 149–163.
  • Herece, E. 2008. Doğu Anadolu Fayi (DAF) Atlası [Atlas of the East Anatolian Fault (EAF)]. General Directorate of Mineral Research and Exploration (MTA) Special Publication Series: 13.
  • Hoeck, V., Koller, F., Meisel, T., Onuzi, K. & Kneringer, E. 2002. The Jurassic South Albanian ophiolites: MOR- vs. SSZ-type ophiolites. Lithos 65, 143–64.
  • Ishiwatari, A. 1985. Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity of ophiolites. Contributions to Mineralogy and Petrology 89, 155–167.
  • Jacques, A.L. & Green, D.H. 1980. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287–310.
  • Jakes, P. & Gill, J. 1970. Rare earth elements and the island arc tholeiitic series. Earth and Planetary Science Letters 9, 17–28.
  • Johannes, W. 1978. Melting of plagioclase in the system Ab-An-H 2 O and Qz-Ab-An-H 2 O at P H2O
  • =5 kbars, an equilibrium problem. Contributions to Mineralogy and Petrology 66, 295–303. Karig, D.E. & Kozlu, H. 1990. Late Palaeogene evolution of the triple junction region near Maraş, south-central Turkey. Journal of Geological Society of London 147, 1023–1034.
  • Kısakürek, E. 1988. Ferhuş-Şerefoğlu (K.Maraş) Arasının Jeolojisi, Petrografisi ve Krom Olanakları [The Geology, petrography and mineralization in the area between Ferhuş-Şerefoğlu (K.Maraş) regions]. MSc Thesis, Çukurova University, Adana-Turkey (in Turkish with English abstract).
  • Koepke, J. & Seidel, E. 2004. Hornblendites within ophiolites from Crete, Greece: evidence for amphibole-rich cumulates derived from an iron-rich tholeiitic melt. Ofioliti 29, 159–175.
  • Leake, B.E. 1978. Nomenclature of amphiboles. American Mineralogist 63, 1023–1052.
  • Livermore, R.A. & Smith, A.G. 1984. Some boundary conditions for the evolution of the Mediterranean Region. In: Stanley, D.J. & Wezel, F.C. (eds), Geological Evolution of the Mediterranean Basin. Springer-Verlag, Berlin, 83–100.
  • Lytwyn, J.N. & Casey, J.F. 1995. The geochemistry of postkinematic mafic dyke swarms and subophiolitic metabasites, PozantıKarsantı ophiolite, Turkey: evidence for ridge subduction. Geological Society of America Bulletin 107, 830–850.
  • Meijer, A. & Reagan, M. 1981. Petrology and geochemistry of the island of Sarigan in the Mariana arc: calcalkaline volcanism in an oceanic setting. Contributions to Mineralogy and Petrology 77, 337–354.
  • Möckel, J.R. 1969. Structural petrology of the garnet-peridotite of Alpe
  • Arami (Ticino, Switzerland). Leidse Geologische Medelingen 42, 61–130. Mori, T. & Banno, S. 1973. Petrology of peridotite and garnet clinopyroxenite of the Mt. Higashi-Akaishi mass, Central Shikoku, Japan–Subsolidus relation of anhydrous phases. Contributions to Mineralogy and Petrology 41, 301–23.
  • Niu, Y. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45, 2423–2458.
  • Obata, M., Banno, S. & Mori, T. 1974. The iron–magnesium partitioning between naturally occurring coexisting olivine and Ca-rich clinopyroxene: an application of the simple mixture model to olivine solid solution. Bulletin de la Société Française de Minéralogie et de Cristallographie 97, 101–107.
  • Okay, A.I. 2000. Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau? In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A. (eds.), Tectonics and Magmatism in Turkey and Surrounding Area. Geological Society, London, Special Publications 173, 25–41.
  • Panjasawatwong, Y., Danyushevsky, L.V., Crawford, A.J. & Harris, K.L. 19 An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbars: implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology 118, 420–432. Parlak, O., Delaloye, M. & Bingöl, E. 1995. Origin of subophiolitic metamorphic rocks beneath the Mersin ophiolite, southern Turkey. Ofioliti 20, 97–110.
  • Parlak, O., Delaloye, M. & Bingöl, E. 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (Southern Turkey). Geologische Rundschau 85, 647–661.
  • Parlak, O., Höck, V. & Delaloye, M. 2000. Suprasubduction zone origin of the Pozantı-Karsantı ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surroundings Area. Geological Society, London, Special Publications 173, 219–234.
  • Parlak, O., Höck, V. & Delaloye, M. 2002. The suprasubduction zone Pozantı-Karsantı ophiolite, southern Turkey: evidence for highpressure crystal fractionation of ultramafic cumulates. Lithos 65, 205–224.
  • Parlak, O., Höck, V., Kozlu, H. & Delaloye, M. 2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geological Magazine 141, 583–603.
  • Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F. & Höck, V. 2009. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473, 173–187.
  • Parlak, O., Yılmaz, H. & Boztuğ, D. 2006. Geochemistry and tectonic setting of the metamorphic sole rocks and isolated dykes from the Divriği ophiolite (Sivas, Turkey): evidence for melt generation within an asthenospheric window prior to ophiolite emplacement. Turkish Journal of Earth Sciences 15, 25–45.
  • Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed), Andesites. Wiley, New York, 525–548.
  • Pearce, J.A. 2003. Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek, Y. & Newcomb, S. (eds), Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper 373, 269–293.
  • Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48.
  • Pearce, J.A., Lippard, S.J. & Roberts, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar, B.P. & Howells, M.F. (eds), Marginal Basin Geology. Geological Society, London, Special Publications 16, 77–89.
  • Pearce, J.A. & Norry, M.J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 33–47.
  • Pearce, J.A. & Peate, D.W. 1995. Tectonic implications of the composition of volcanic arc lavas. Annual Review of Earth and Planetary Sciences 23, 251–285.
  • Pe-Piper, G., Tsikouras, B. & Hatzipanagiotou, K. 2004. Evolution of boninites and island-arc tholeiites in the Pindos ophiolite, Greece. Geological Magazine 141, 455–469.
  • Photiades, A., Saccani, E. & Tassinari, R. 2003. Petrogenesis and tectonic setting of volcanic rocks from the subpelagonian ophiolitic mélange in the Agoriani area (Othrys, Greece). Ofioliti 28, 121–135.
  • Pouchou, J.L. & Pichoir, F. 1984. A new model for quantitative X-ray microanalysis. Application to the analysis of homogeneous samples. La Recherche Aérospatiale 3, 13–38.
  • Putirka, K.D. 2008. Thermometers and barometers for volcanic systems. In: Putirka, K.D. & Tepley, F. (eds), Reviews in Mineralogy and Geochemistry 69, 61–120.
  • Rızaoğlu, T., Parlak, O., Höck, V. & İşler, F. 2006. Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. In: Robertson, A.H.F. & Mountrakis, D. (eds), Tectonic Development of the Eastern Mediterranean. Geological Society, London, Special Publication 260, 327–350.
  • Robertson, A.H., Ustaömer, T., Parlak, O., Ünlügenç, U.C., Taslı, K. & İnan, N. 2006. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous–Early Cenozoic accretionary/ collisional processes related to closure of the southern Neotethys. Journal of Asian Earth Sciences 27, 108–145.
  • Robertson, A.H.F. 2000. Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In: Bozkurt, E., Winchester, J.A. & Piper, J.D. (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publication 173, 43–
  • Robertson, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 1–67.
  • Robertson, A.H.F. & Comas, M. 1998. Collision-related processes in the Mediterranean region-introduction. Tectonophysics 298, 1–
  • Robertson, A.H.F. & Dixon, D.E. 1984. Introduction: aspects of the geological evolution of the eastern Mediterranean. In: Dixon, J.E. & Robertson, A.H.F. (eds), The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publication 17, 1–74.
  • Robertson, A.H.F., Parlak, O., Rızaoğlu, T., Ünlügenç, U.C., İnan, N., Taslı, K. & Ustaömer, T. 2007. Tectonic evolution of the South Tethyan Ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In: Ries, A.C., Butler, R.W.H. & Graham, R.H. (eds), Deformation of the Continental Crust. The Legacy of Mike Coward. Geological Society, London, Special Publication 272, 231–270.
  • Robertson, A.H.F., Ünlügenç, U.C., İnan, N. & Taslı, K. 2004. The Misis–Andırın complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey. Journal of Asian Earth Sciences 22, 413–453.
  • Ross, C.S., Foster, M.D. & Myers, A.T. 1954. Origin of dutines and olivine rich inclusions in basaltic rocks. American Mineralogist 39, 693–737.
  • Ross, K. & Elthon, D. 1993. Cumulates from strongly depleted midocean-ridge basalt. Nature 365, 826–829.
  • Saccani, E. & Photiades, A. 2004. Mid-ocean ridge and suprasubduction affinities in the Pindos Massif ophiolites (Greece): implications for magma genesis in a proto-forearc setting. Lithos 73, 229–253.
  • Saccani, E. & Photiades, A. 2005. Petrogenesis and tectonomagmatic significance of volcanic and subvolcanic rocks in the AlbanideHellenide ophiolitic mélanges. The Island Arc 14, 494–516.
  • Sarıfakioğlu, E., Özen, H. & Winchester, J.A. 2009. Whole rock and mineral chemistry of ultramafic-mafic cumulates from the Orhaneli (Bursa) ophiolite, NW Anatolia. Turkish Journal of Earth Sciences 18, 55–83.
  • Savostin, L.A., Sibuet, J.C., Zonenshain, L.P., Le Pichon, X. & Rolet, J. 19 Kinematic evolution of the Tethys belt, from the Atlantic to the Pamirs since the Triassic. Tectonophysics 123, 1–35. Şengör, A.M.C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.
  • Shervais, J.W. 1982. Ti-V plots and the petrogenesis of modern ophiolitic lavas. Earth and Planetary Science Letters 59, 101–
  • Shervais, J.W. 2001. Birth, death and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems 2, 2000GC000080.
  • Sisson, T.W. & Grove, T.L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113, 143–166.
  • Spray, J.G. 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. In: Gass, I.G., Lippard, S.J. & Shelton, A.W. (eds), Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publication 13, 255–268.
  • Stampfli, G.M. 2000. Tethyan oceans. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and Surrounding Area. Geological Society, London, Special Publication 173, 163–185.
  • Stern, R.J. 1979. On the origin of andesite in the northern Mariana island arc: implications from Agrigan. Contributions to Mineralogy and Petrology 68, 207–219.
  • Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publication 42, 313–46.
  • Taylor, W.R. 1998. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolites and garnet websterite. Neues Jahrbuch für Mineralogie, Abhandlungen 172, 381–408.
  • Tekeli, O. & Erendil, M. 1986. Geology and petrology of the Kızıldağ ophiolite (Hatay). Bulletin of Mineral Research and Exploration Institute of Turkey 21, 21–37.
  • Terlemez, H.Ç.İ., Şentürk, K., Ateş, Ş., Sümengen, M. & Oral, A. 1992.
  • Gaziantep dolayının ve Pazarcık-Sakçagöz-Kilis-Elbeyli-Oğuzeli arasının jeolojisi [The geology of the Gaziantep region and among the Pazarcık-Sakçagöz-Kilis-Elbeyli-Oğuzeli]. General Directorate of Mineral Research and Exploration (MTA) Publication: 9526.
  • Tiepolo, M. & Tribuzio, R. 2005. Slab-melting during Alpine orogeny: evidence from mafic cumulates of the Adamello batholith (Central Alps, Italy). Chemical Geology 216, 271–288.
  • Ustaömer, T. & Robertson, A.H.F. 1994. Late Palaeozoic marginal basin and subduction-accretion: the Palaeotethyan Küre Complex, Central Pontides, northern Turkey. Journal of the Geological Society of London 151, 291–305.
  • Uysal, İ. 2008. Platinum-group minerals (PGM) and other solid inclusions in the Elbistan-Kahramanmaraş mantle-hosted ophiolitic chromitites, south-eastern Turkey: their petrogenetic significance. Turkish Journal of Earth Sciences 17, 729–740.
  • Uysal, İ., Ersoy, E.Y., Karslı, O., Dilek, Y., Sadıklar, M.B., Ottley, C.J., Tieplo, M. & Meisel, T. 2012. Coexistence of abyssal and ultradepleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: constraints from mineral composition, wholerock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 132–133, 50–69.
  • Uysal, İ., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H.J. & Sadıklar, M.B. 2007. Ophiolitic chromitites from the Kahramanmaraş area, southeastern Turkey: their platinumgroup elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti 32, 151–161.
  • Vergili, Ö. & Parlak, O. 2005. Geochemistry and tectonic setting of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia. Ofioliti 30, 37–52.
  • Wager, L.R., Brown, G.M. & Wadsworth, W.J. 1960. Types of igneous cumulates. Journal of Petrology 1, 73–85.
  • Wood, B.J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxeneclinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology 42, 109–124.
  • Yalınız, K.M., Floyd, P. & Göncüoğlu, M.C. 1996. Supra-subduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarikaraman ophiolite, Aksaray, Turkey. Mineralogical Magazine 60, 697–710.
  • Yazgan, E. & Chessex, R. 1991. Geology and tectonic evolution of the southeastern Taurides in the region of Malatya. Turkish Association of Petroleum Geologists 3, 1–42.
  • Yılmaz, Y. 1993. New evidence and model on the evolution of the Southeast Anatolian orogen. Bulletin of Geological Society of America 105, 251–271.
  • Yılmaz, Y., Demirkol, C., Yalçın, N., Yiğitbaş, E., Gürpınar, O., Yetiş, C., Günay, Y. & Sarıtaş, B. 1984. Amanos Dağlarının Jeolojisi, II Ofiyolit [The geology of the Amanos mountains, II Ophiolite]. İstanbul Teknik Üniversitesi Mühendislik Fakültesi Publication 3
  • Yılmaz, Y. & Gürer, Ö.F. 1996. The geology and evolution of the Misis–Andırın belt around Andırın (Kahramanmaras). Turkish Journal of Earth Sciences 5, 39–55.
  • Yılmaz, Y., Yiğitbaş, E. & Genç, Ş.C. 1993. Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic Belt. Tectonics 12, 1280–1297.
  • Yılmaz, Y. & Yıldırım, M. 1996. Geology and evaluation of the nap region (the metamorphic massifs) of the southeast Anatolian orogenic belt. Turkish Journal of Earth Sciences 17, 21–38.
  • Yoder, H.S. 1969. Calc-alkaline andesites: experimental data bearing the origin of assumed characteristics. In: McBirney, A.R. (ed), Proceedings of Andesite Conference. Bulletin of State of Oregon Department of Geology and Mining Research 65, 43–64.
  • Yoldemir, O. 1987. Gölbaşı (Adıyaman) güneyindeki alanda izlenen Haydarlı formasyonunun (Üst Kretase) sedimantolojisi ve ortamsal yorumu [Sedimentology and interpretation of environment of deposition of the Upper Cretaceous Haydarlı Formation south of the Gölbaşı (Adıyaman)]. 7th Biannual Petroleum Congress of Turkey, Proceedings: 192–202.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Preliminary geoelectrical identification of a low-temperature hydrothermal system in the Anzer glacial valley, İkizdere, Rize, Turkey

Abdullah KARAMAN

Low-sulfidation epithermal Au-Ag mineralization in the Sındırgı District, Balıkesir Province, Turkey

Hüseyin YILMAZ, Fatma Nuran SÖNMEZ, Erhan AKAY, Ahmet Kerim ŞENER, Seda TEZEL TUFAN

The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaraş region, southern Turkey

Utku BAĞCI

Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey

Muhsin EREN Selahattin KADİR

Coastal inundation due to sea level rise and extreme sea state and its potential impacts: Çukurova Delta case

Özlem SİMAV, Dursun Zafer ŞEKER, Cem GAZİOĞLU

Geology and diagenesis of a zeolitic Foça tuff unit deposited in a Miocene phreatomagmatic lacustrine environment (western Anatolia)

Mustafa ALBAYRAK, Abdullah Mete ÖZGÜNER

The mineralogy and geochemistry of Neogene sediments from eastern Turkey, southeast of Arapgir (Malatya)

Dicle BAL AKKOCA, Zeynep BAYTAŞOĞLU

Three-dimensional subsurface modeling of mineralization: a case study from the Handeresi (Çanakkale, NW Turkey) Pb-Zn-Cu deposit

Sinan AKISKA, İbrahim Sönmez SAYILI, Gökhan DEMİRELA

The Anzer glacial valley, at an elevation of over 2300 m in the Eastern Black Sea region of Turkey, exhibits evidence for a lowtemperature hydrothermal system (40 100 °C). Low-temperature hydrothermal systems usually do not receive attention since they are not useful for energy production. However,

Abdullah KARAMAN

Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turkey

Bahri ERSOY, Sedef DİKMEN, Ahmet YILDIZ, Remzi GÖREN, Ömer ELİTOK