Santonian-Campanian biostratigraphy of the Kalaat Senan area (West-Central Tunisia)

The Santonian-Campanian (S/C) transition in the Kalaat Senan area is well exposed in the Assila Wadi (OA) section and consists of marls with indurate glauconitic levels towards the base. Standard Mediterranean ammonite biozonations could not be applied to this section because the biomarkers are absent. However, planktonic foraminiferal biozonation is more reliable for indicating the S/C boundary, and here we propose to use the last appearance datum of Dicarinella asymetrica as the index marker of this boundary. A high-resolution quantitative analysis of the planktonic foraminifera of the OA section allows us to define the main bioevents across the S/C transition interval and to specify the S/C boundary. The section reveals that the extinctions across the transition interval occurred among species with a trochospiral keeled test and free portici of the genera Dicarinella and Marginotruncana. In fact, the dicarinellids eventually became extinct and the last appearance of the index species Dicarinella asymetrica defines the S/C boundary, whereas the marginotruncanids suffered a gradual extinction and several species crossed the boundary. Representative taxa of the genera Globotruncanita and Globotruncana first occurred in the uppermost part of the Santonian. These bioevents indicate a major but gradual planktonic foraminiferal turnover during the S/C transition, and may be related to adaptive changes and intraspecific competition. Because dicarinellids and marginotruncanids lived in tropical-subtropical oceanic realms, they seem to have been less able to adapt during the environmental changes associated with the transition; they were progressively replaced by more evolved globotruncanids belonging to the genera Globotruncana and Globotruncanita. This major turnover may have been initiated by an increase in temperatures succeeding a maximum flooding stage of a transgressive period. These oceanic conditions appear to have been favorable for radiation of the globotruncanids and heterohelicids.

Santonian-Campanian biostratigraphy of the Kalaat Senan area (West-Central Tunisia)

The Santonian-Campanian (S/C) transition in the Kalaat Senan area is well exposed in the Assila Wadi (OA) section and consists of marls with indurate glauconitic levels towards the base. Standard Mediterranean ammonite biozonations could not be applied to this section because the biomarkers are absent. However, planktonic foraminiferal biozonation is more reliable for indicating the S/C boundary, and here we propose to use the last appearance datum of Dicarinella asymetrica as the index marker of this boundary. A high-resolution quantitative analysis of the planktonic foraminifera of the OA section allows us to define the main bioevents across the S/C transition interval and to specify the S/C boundary. The section reveals that the extinctions across the transition interval occurred among species with a trochospiral keeled test and free portici of the genera Dicarinella and Marginotruncana. In fact, the dicarinellids eventually became extinct and the last appearance of the index species Dicarinella asymetrica defines the S/C boundary, whereas the marginotruncanids suffered a gradual extinction and several species crossed the boundary. Representative taxa of the genera Globotruncanita and Globotruncana first occurred in the uppermost part of the Santonian. These bioevents indicate a major but gradual planktonic foraminiferal turnover during the S/C transition, and may be related to adaptive changes and intraspecific competition. Because dicarinellids and marginotruncanids lived in tropical-subtropical oceanic realms, they seem to have been less able to adapt during the environmental changes associated with the transition; they were progressively replaced by more evolved globotruncanids belonging to the genera Globotruncana and Globotruncanita. This major turnover may have been initiated by an increase in temperatures succeeding a maximum flooding stage of a transgressive period. These oceanic conditions appear to have been favorable for radiation of the globotruncanids and heterohelicids.

___

  • Arenillas I, Arz JA, Molina E, Dupuis C (2000). The Cretaceous boundary at Aïn Settara, Tunisia: sudden catastrophic mass extinction in planktic foraminifera. J Foramin Res 30: 202–218
  • Arthur MA, Dean WE, Schlanger SO (1985). Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, In: Sundquist ET and Broecker WS, editors. The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. Am Geophys Union Geophys Monogr 32: 504–529.
  • Arz JA (1996). Los foraminíferos planctόnicos del Campaniense y Maastrichtiense: bioestratigrafía, cronoestratigrafía y eventos paleoecolόgicos. PhD, Universidad de Zaragoza, Zaragoza, Spain (in Spanish).
  • Bellier JP (1983). Foraminifères planctoniques du Crétacé de Tunisie septentrionale. Systématique, biozonation, utilisation stratigraphique de l’Albien au Maastrichtien. PhD, Université Pierre et Marie-Curie, Paris, France (in French).
  • Ben Ferjani A, Burollet PF, Mejeri F (1990). Petroleum Geology of Tunisia. ETAP Tunis Mem 1: 1–194.
  • Berthe D (1949). Log de la série crétacée de Koudiat el Afna-Kalaat es Senam au 5000e. Documents SEREPT, Tunis, GN411 (unpublished; in French).
  • Bey S, Kuss J, Premol Silva I, Negra MH, Gardin S (2012). Faultcontrolled stratigraphy of the late Cretaceous Abiod Formation at Ain Mdheker (Northeast Tunisia). Cretaceous Res 34: 10–25.
  • Boersma A, Premoli Silva I (1989). Atlantic Paleogene biserial heterohelicid foraminifera and oxygen minima. Paleoceanography 4: 271–286.
  • Burnett JA (1998). Upper Cretaceous. In: Bown PR, editor. Calcareous Nannofossil Biostratigraphy. Cambridge, UK: Chapman and Hall, pp. 225–265.
  • Burollet PF (1956). Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Min Geol Tunis 18: 1–350 (in French).
  • Caron M (1985). Cretaceous planktonic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K, editors. Plankton Stratigraphy. Cambridge, UK: Cambridge University Press, pp. 17–86.
  • Caron M, Homewood P (1982). Evolution of early planktonic foraminifers. Mar Micropaleontol 7: 453–462.
  • Clarke LG, Jenkyns HC (1999). New oxygen isotope evidence for longterm Cretaceous climatic change in the Southern Hemisphere. Geology 27: 699–702.
  • Cobban WA, Walaszczyk I, Obradovich JD, Mckinney KC (2006). A USGS zonal table for the Upper Cretaceous middle CenomanianMaastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. Reston, VA, USA: US Geological Survey, Open File Report 2006-1250.
  • Crux JA (1982). Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. In: Lord AR, editor. A Stratigraphical
  • Index of Calcareous Nannofossils. London, UK: British Micropalaeontological Society Series, pp. 81–135. Dalbiez F (1955). The Genus Globotruncana in Tunisia. Micropaleontology 1: 161–171.
  • El Amri Z (2008). Etude micropaléontologique, biostratigraphique et paléoécologique des foraminifères planctoniques du Turonien terminal-Campanien de la Tunisie centrale et septentrionale.
  • PhD, Faculté des Sciences de Tunis, Tunis, Tunisia (in French). El Amri Z, Zaghbib-Turki D (2005). Caractérisation biostratigraphique du passage Coniacien-Santonien dans les régions d’Ellès et El Kef (Tunisie septentrionale). J Iber Geol 31: 99–111 (in French).
  • Falzoni F, Petrizzo MR (2011). Taxonomic overview and evolutionary history of Globotruncanita insignis (Gandolfi, 1955). J Foramin Res 41: 371–383.
  • Fournié D (1978). Nomenclature lithostratigraphique des séries du
  • Crétacé Supérieur au Tertiaire de la Tunisie. B Cent Rech Expl 2: 97–148 (in French). Gale AS, Hancock JM, Kennedy WJ, Petrizzo MR, Lees JA, Walaszczyk I, Wray DS (2008). An integrated study (geochemistry, stable oxygen and carbon isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids) of the Waxahachie Dam Spillway section, north Texas: a possible boundary stratotype for the base of the Campanian Stage. Cretaceous Res 29: 131–167.
  • Gale AS, Montgomery P, Kennedy WJ, Burnett JA, McArthur JM (1995). Definition and global correlation of the Santonian–
  • Campanian boundary. Terra Nova 7: 611–622. Gardin S, Del Panta F, Monech S, Pozzi M (2001). A Tethyan reference record for the Campanian and Maastrichtian stage: The Battacione section (Central Italy); Review of data and new calcareous nannofossil results. In: Odin GS, editor. The Campanian-Maastrichtian Stage Boundary-Characterization at Tercis les Bains (France) and Correlation with Europe and Other Continents. Dev Palaeontology Stratigr 19: 745–757.
  • Georgescu MD (2006). Santonian–Campanian planktonic foraminifera in the New Jersey coastal plain and their distribution related to the relative sea-level changes. Can J Earth Sc 43: 101–120.
  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012). The Geological
  • Time Scale. Amsterdam, the Netherlands: Elsevier. Gradstein FM, Ogg JG, Smith AG (editors) (2004). A Geologic Time
  • Scale. Cambridge, UK: Cambridge University Press. Hampton MJ, Bailey HW, Gallagher LT, Mortimore RN, Wood CJ (2007). The biostratigraphy of Seaford Head Sussex, southern England: an international reference section for the basal boundaries for the Santonian and Campanian stages in chalk facies. Cretaceous Res 28: 46–60.
  • Hancock JM, Gale AS (1996). The Campanian Stage. B I Roy Sci Nat Belg Sciences de la Terre 66 (Supplement): 103–109.
  • Haq BU, Hardenbol J, Vail PR (1987). Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167.
  • Hart MB (1999). The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios-Lyon 32: 247–255.
  • Jarvis I, Mabrouk A, Moody RTJ, De Cabrera S (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoecol 188: 215–248.
  • Küchler T, Wagreich M (2002). The Santonian-Campanian boundary in Navarra and Alava, Northern Spain. A multistratigraphic approach. In: Wagreich M, editor. Aspects of Cretaceous Stratigraphy and Paleobiogeography. Osterr Akademie der Wissenschaften Wien 15: 333–350.
  • Lehotsky I, Bujnowsky A, Lajmi TZ, Ben Salem H (1978). Carte géologique de Kalaat Senan n°59 au 1/50 000. Feuille n° 59: Kalaat Es Senan-sous-direction de la Géologie au Ministère des Mines et de l’Industrie. Serv Geol de Tunisie (in French).
  • Luciani V (2002). High-resolution planktonic foraminiferal analysis from the Cretaceous–Tertiary boundary at Aïn Settara (Tunisia): evidence of an extended mass extinction. Palaeogeogr Palaeoecol 178: 299–319.
  • MacLeod KG, Huber TB, Pletsch P, Röhl U, Kucera M (2001). Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch timescales. Paleoceanography 16: 133–154.
  • Melinte-Dobrinescu MC, Bojar AV (2010). Late Cretaceous carbonand oxygen isotope stratigraphy, nannofossil events and paleoclimate fluctuations in the Haţeg area (SW Romania). Palaeogeogr Palaeoecol 293: 295–305.
  • Miller KJ, Wright JD, Browning JV (2005). Visions of ice sheets in a greenhouse world. Mar Geol 217: 215–231.
  • Nederbragt AJ (1991). Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontol 37: 329–372.
  • Nederbragt AJ (1993). Biometric analysis of multiserial chamber proliferation in Santonian Heterohelicidae (planktic foraminifera). J Foramin Res 23: 192–200.
  • Ogg JG, Ogg G (2004). Late Cretaceous Time Scale (65-100 Ma time-slice). Available at https://engineering.purdue.edu/ stratigraphy/charts/Timeslices/3_Late_Cret.pdf.
  • Pervinquière L (1903). Étude géologique de la Tunisie centrale. Thesis, Faculté des Sciences de Paris, F.R. de Rudeval, Paris, France (in French).
  • Pervinquière L (1907). Étude de paléontologie tunisienne: céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, Atlas, F.R. de Rudeval, Paris, France (in French).
  • Peryt D (1980). Planktic foraminifera zonation of the Upper Cretaceous in the Middle Vistula River Valley, Poland. Palaeontologica Polonica 41: 3–101.
  • Petrizzo MR (2000). Upper Turonian-lower Campanian planktonic foraminifera from southern mid–high latitudes (Exmouth
  • Plateau, NW Australia): biostratigraphy and taxonomic notes. Cretaceous Res 21: 479–505. Petrizzo MR (2002). Paleooceanographic and paleoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from Exmouth Plateau (ODP Sites 762 and 763, Eastern Indian Ocean). Mar Micropaleontol 45: 117–150.
  • Petrizzo MR (2003). Late Cretaceous planktonic foraminiferal bioevents in the Tethys and in the southern ocean record: an overview. J Foramin Res 33: 330–337.
  • Petrizzo MR, Falzoni F, Premoli Silva I (2011). Identification of the base of the lower-to-middle Campanian Globotruncana ventricosa Zone: comments on reliability and global correlations. Cretaceous Res 32: 387–405.
  • Postuma JA (1971). Manual of Planktonic Foraminifera. Amsterdam, the Netherlands: Elsevier.
  • Pożaryska K, Peryt D (1979). The Late Cretaceous and Early
  • Paleocene foraminiferal “Transition Province” in Poland. Aspekte der Kreide Europas IUGS Series A 6: 293–303. Premoli Silva I, Sliter WV (1995). Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Battacione section, Gubbio, Italy. Paleontographia Italica 82: 1–89.
  • Premoli Silva I, Sliter WV (1999). Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In: Barrera
  • E, Johnson CC, editors. The Evolution of the Cretaceous Ocean-Climate System. Geol S Am S 332: 301–328. Premoli Silva I, Spezzaferri S, D’Angelantonio A (1998). Cretaceous foraminiferal bio-isotope stratigraphy of Hole 967e and Paleogene planktonic foraminiferal biostratigraphy of Hole 966F, Eastern Mediterranean. College Station, TX, USA: Ocean Drilling Program 160.
  • Puckett TM (2005). Santonian-Maastrichtian planktonic foraminiferal and ostracode biostratigraphy of the northern
  • Gulf Coastal Plain, USA. Stratigraphy 2: 117–146. Rami A (1998). Précisions biostratigraphiques et milieu de dépôt des séries du Crétacé supérieur de la Tunisie centro-septentrionale.
  • PhD, Faculté des Sciences de Tunis, Tunis, Tunisia (in French). Rami A, Zaghbib-Turki D, El Ouardi H (1997). Biostratigraphie
  • (Foraminifères) et contrôle tectono-sédimentaire du Crétacé supérieur dans la région de Mejez El Bab (Tunisie septentrionale). Geol Méditerranéenne 14  : 101–123 (in French). Remin Z (2004). Biostratigraphy of the Santonian in the SW margin of the Holy Cross Mountains near Lipnik, a potential reference section for extra-Carpathian Poland. Acta Geol Pol 54: 587– 5
  • Robaszynski F (1999). Cretaceous stage boundaries in central Tunisia: how to follow the Brussels 1995 symposium recommendations.
  • B I Roy Sci Nat Belg 69 Supplement A: 161–165. Robaszynski F, Caron M (1995). Foraminifères planctoniques du
  • Crétacé: Commentaire de la zonation Europe-Méditerranée. B Soc Geol Fr 166: 681–692 (in French). Robaszynski F, Caron M, Gonzalez Donoso JM, Wonders AH, European Working Group on Planktonic Foraminifera (1984). Atlas of Late Cretaceous globotruncanids. Rev Micropaleontol 26: 145–305.
  • Robaszynski F, Gonzalez Donoso JM, Linares D, Amedro F, Caron M, Dupuis C, Dhondt AV, Gartner S (2000). Le Crétacé Supérieur de la région de Kalaat Senan, Tunisie centrale. Lithobiostratigraphie intégrée zones d’ammonites, de Foraminifères planctonique et de nannofossiles du Turonien supérieur au Maastrichtien. B Cent Rech Expl 22: 359–490 (in French).
  • Robaszynski F, Mzoughi M (2010). The Abiod Formation at Ellès (Tunisia): tripartite lithology, biohorizons based on globotruncanids and ammonites, duration, location of Campanian-Maastrichtian boundary, correlation with Kalaat Senan and the Tercis (France) stratotype. Notebooks on Geology CG2010–A04.
  • Robaszynski F, Pomerol B, Masure E, Bellier JB, Deconinck JF (2005). Stratigraphy and stage boundaries in reference sections of the Upper Cretaceous Chalk in the east of the Paris Basin: the “Craie700” Provins boreholes. Cretaceous Res 26: 157–169.
  • Salaj J (1980). Microbiostratigraphie du Crétacé et du Paléogène de la Tunisie septentrionale et orientale (hypostratotypes tunisiens). Bratislava, Czechoslovakia: State Geological Institute of Dionız Stşr (in French).
  • Salaj J, Samuel O (1963). Mikrobiostratigrafia strednej a vrchnej kriedy z vıchodnej časti bradlového pásma. Geologicke Práce
  • Zprávy 30: 93–112 (in Czech). Sari B (2006). Upper Cretaceous planktonic foraminiferal biostratigraphy of the Bey Dağları autochthon in the Korkuteli area, Western Taurides, Turkey. J Foramin Res 36: 241–261.
  • Steuber T, Rauch M, Masse JP, Graaf J, Malkoč M (2005). Lowlatitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature 437: 1341–1344.
  • Sigal J (1952). Aperçu stratigraphique sur la microbiostratigraphie du Crétacé. 19éme Cong Geol Inter Alger Monogr Région 1
  • Algérie 26: 1–45 (in French). Thomas P (1909). Essai d’une description géologique de la Tunisie.
  • Deuxième partie: Stratigraphie des terrains paléozoïques et mésozoïques. Impr Nat Paris: 273–728. Wagreich M, Summesberger H, Kroh A (2010). Late Santonian bioevents in the Schattau section, Gosau Group of Austria implications for the Santonian–Campanian boundary stratigraphy. Cretaceous Res 31: 181–191.
  • Wonders AAH (1980). Middle and Late Cretaceous planktonic foraminifera of the western Mediterranean area. Utrecht Micropaleontol B 24: 1–157.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Chemistry of magmatic and alteration minerals in the Chahfruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fuids

Morteza EINALI, Saeed ALIREZAEI, Federica ZACCARINI

Terebella lapilloides Münster, 1833 from the Upper Jurassic Lower Cretaceous İnaltı carbonates, northern Turkey: its taxonomic position and paleoenvironmental-paleoecological signifcance

Demir ALTINER, Mustafa Yücel KAYA

Comparative geochemical study of soils developed on characteristic black and yellowpolymetallic massive sulfde deposits in Eastern Pontides (NE Turkey)

Nezihi KÖPRÜBAŞI, Cafer ÖZKUL, Necla KÖPRÜBAŞI, Sait CORDAN, Fatma TÜKEL ŞİŞMAN, Emin ÇİFTÇİ

Toxic element contamination in waters from the massive sulfide deposits and wastes around Giresun, Turkey

Necati KARAKAYA, Muazzez ÇELİK KARAKAYA

Terebella lapilloides Münster, 1833 from the Upper Jurassic-Lower Cretaceous İnaltı carbonates, northern Turkey: its taxonomic position and paleoenvironmental-paleoecological significance

Mustafa Yücel KAYA, Demir ALTINER

Santonian-Campanian biostratigraphy of the Kalaat Senan area (West-Central Tunisia)

Zaineb ELAMRI, Dalila ZAGHBIB-TURKI

Development of a numerical 2-dimensional beach evolution model

Cüneyt BAYKAL

Toxic element contamination in waters from the massive sulfde deposits and wastes around Giresun, Turkey

Necati KARAKAYA, Muazzez KARAKAYA ÇELİK

Chemistry of magmatic and alteration minerals in the Chahfiruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fluids

Morteza EINALI, Saeed ALIREZAEI, Federica ZACCARINI

Comparative geochemical study of soils developed on characteristic black and yellow polymetallic massive sulfide deposits in Eastern Pontides (NE Turkey)

Nezihi KÖPRÜBAŞI, Emin ÇİFTÇİ, Sait CORDAN, Necla KÖPRÜBAŞI, Cafer ÖZKUL, Fatma Şişman TÜKEL