Rheological behaviour in continental and oceanic subduction: inferences for the seismotectonics of the Aegean Region

We reconstructed several rheological transects across the Aegean Region, comparing the behaviour in collisional versus subducting settings. We interpolated closely spaced 1D strength envelopes, realized through a dedicated MATLAB script, for determining the shallow lithospheric distribution of brittle and ductile layers. We mainly used literature data and geodynamic considerations to fix the parameters for the rheological modelling and took particular care in reproducing reliable thermal models. The results of the mechanical-rheological model highlighted the following features and differences between the northern continental collision and the southern oceanic subduction settings: i) a slightly shallower brittle-ductile transition (BDT) in the western sectors of the northern transects (~30-33 km) with respect to the southern ones (~40 km); ii) on the contrary, in the central-eastern sectors of the investigated area, corresponding to an extensional tectonic regime, the northern transects have a relatively deeper BDT (about 20-25 km) compared with the southern ones (about 15 km); iii) the occurrence of a thick, deeper brittle layer below the shallowest BDT, in the centraleastern sectors of the northern transects. We suggest that such regional differences are mainly related and attributable to the surface heat flow distribution (which directly affects the geothermal gradient) and to the tectonic and geodynamic context. The results of the rheological modelling in terms of depth extent of the brittle layer(s) have been compared with the depth distribution of available relocated seismicity, showing good agreement with the rheological layering proposed here. Finally, the depth of the shallowest BDT along the transects has been adopted as a constraint for the seismogenic layer thickness. Such information has been used to improve the seismotectonic characterization of selected crustal seismogenic sources crossing the transects, by estimating their maximum potential magnitudes on the basis of their geometrical features and consistency with the rheological layering.

___

  • Armijo R, Lyon-Caen H, Papanastassiou D (1992). East-west extension and Holocene normal-faults scarps in the Hellenic arc. Geology 20: 491-494. doi: 10.1130/0091-7613(1992)020<0491:EWEAH N>2.3.CO;2
  • Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International 126: 11-53. doi: 10.1111/j.1365- 246X.1996.tb05264.x
  • Avallone A, Briole P, Agatza-Balodimou AM, Billiris H, Charade O et al. (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. Comptes Rendus Geoscience 336 (4-5): 301-311. doi: 10.1016/j.crte.2003.12.007
  • Beardsmore GR, Cull JP (editors) (2001). Crustal Heat Flow: A Guide to Measurement and Modelling. 1st ed. Cambridge, UK: Cambridge University Press.
  • Beeler NM, Hirth G, Tullis TE, Webb CH (2018). On the depth extent of coseismic rupture. Bulletin of the Seismological Society of America 108 (2): 761-780. doi: 10.1785/0120160295
  • Benetatos C, Kiratzi A (2006). Finite-fault slip models for the 15 April 1979 (Mw 7.1) Montenegro earthquake and its strongest aftershock of 24 May 1979 (Mw 6.2). Tectonophysics 421 (1): 129-143. doi: 10.1016/j.tecto.2006.04.009
  • Boore DM, Sims JD, Kanamori H, Harding S (1981). The Montenegro, Yugoslavia, earthquake of April 15, 1979: source orientation and strength. Physics of the Earth and Planetary Interiors 27 (2): 133-142. doi: 10.1016/0031-9201(81)90041-8
  • Brace WF, Kohlstedt DL (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research 85 (B11): 6248-6252. doi:10.1029/JB085iB11p06248
  • Briole P, Rigo A, Lyon-Caen H, Ruegg JC, Papazissi K et al. (2000). Active deformation of the Corinth rift, Greece: results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research 105 (B11): 25605- 25625. doi: 10.1029/2000JB900148
  • Byerlee JD (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research 73 (14): 4741-4750. doi: 10.1029/ JB073i014p04741
  • Byerlee JD (1978). Friction of rocks. In: Byerlee JD, Wyss M (editors). Rock Friction and Earthquake Prediction. 1st ed. Basel, Switzerland: Birkhäuser, pp. 615-626.
  • Caputo R (2005). Ground effects of large morphogenic earthquakes. Journal of Geodynamics 40 (2-3): 113-118. doi: 10.1016/j. jog.2005.07.001
  • Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012). The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece. Annals of Geophysics 55 (5): 859-894. doi: 10.4401/ag-5168
  • Caputo R, Pavlides S (1993). Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics 223 (3-4): 339-362. doi: 10.1016/0040- 1951(93)90144-9
  • Caputo R, Pavlides S (2013). The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: A Compilation of Potential Seismogenic Sources (Mw > 5.5) in the Aegean Region. Available at http://gredass.unife.it/. doi: 10.15160/unife/gredass/0200.
  • Carter NL, Tsenn MC (1987). Flow properties of continental lithosphere. Tectonophysics 136 (1-2): 27-63. doi: 10.1016/0040- 1951(87)90333-7
  • Čermák V (1982). Crustal temperature and mantle heat flow in Europe. Tectonophysics 83 (1-2): 123-142. doi: 10.1016/0040- 1951(82)90012-9
  • Čermak V, Rybach L (1982). Thermal properties: thermal conductivity and specific heat of minerals and rocks. In: Angenheister G (editor). Physical Properties of Rocks. 1st ed. Heidelberg, Germany: Springer, pp. 305-343.
  • Chapman DS (1986). Thermal gradients in the continental crust. Geological Society of London Special Publications 24 (1): 63- 70. doi: 10.1144/GSL.SP.1986.024.01.07
  • Chen WP, Yu CQ, Tseng TL, Yang Z, Wang CY et al. (2013). Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics 609: 491-503. doi: 10.1016/j.tecto.2012.12.019
  • Chiaraluce L, Chiarabba C, Collettini C, Piccinini D, Cocco M (2007). Architecture and mechanics of an active low-angle normal fault: Alto Tiberina fault, northern Apennines, Italy. Journal of Geophysical Research 112: B10310. doi: 10.1029/2007JB005015
  • Chopra PN, Paterson MS (1981). The experimental deformation of dunite. Tectonophysics 78: 453-473. doi: 10.1016/0040- 1951(81)90024-X
  • Cloetingh SAPL, Van Wees JD, Ziegler PA, Lenkey L, Beekman F et al. (2010). Lithosphere tectonics and thermo-mechanical properties: an integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth Science Reviews 102 (3-4): 159-206. doi: 10.1016/j.earscirev.2010.05.003
  • Collettini C, Holdsworth RE (2004). Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society 161 (6): 1039-1051. doi: 10.1144/0016-764903-179
  • Davis D, Suppe J, Dahlen FA (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88 (B2): 1153-1172. doi: 10.1029/JB088iB02p01153
  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X et al. (1986). Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123: 241-315. doi: 10.1016/0040-1951(86)90199-X
  • Devoti R, Pietrantonio G, Riguzzi F (2014). GNSS networks for geodynamics in Italy. Física de la Tierra 26: 11-24.
  • Doglioni C, Carminati E, Petricca P, Riguzzi F (2015). Normal fault earthquakes or graviquakes. Scientific Reports 5: 12110. doi: 10.1038/srep12110
  • Doser DI, Kanamori H (1986). Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research 91 (B1): 675-688. doi: 10.1029/ JB091iB01p00675
  • Doutsos T, Koukouvelas I (1998). Fractal analysis of normal faults in northwestern Aegean area, Greece. Journal of Geodynamics 26 (2-4): 197-216. doi: 10.1016/S0264-3707(97)00052-5
  • Doutsos T, Koukouvelas IK, Xypolias P (2006). A new orogenic model for the External Hellenides. Geological Society of London Special Publications 260 (1): 507-520. doi: 10.1144/GSL. SP.2006.260.01.21
  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L et al. (2014). Mantle dynamics in the Mediterranean. Reviews of Geophysics 52: 283-332. doi: 10.1002/2013RG000444
  • Fertl WH, Chapman RE, Hotz RF (editors) (1994). Studies in Abnormal Pressures. Developments in Petroleum Science. 1st ed. Amsterdam, the Netherlands: Elsevier.
  • Floyd MA, Billiris H, Paradissis D, Veis G, Avallone A et al. (2010). A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research 115: B10. doi: 10.1029/2009JB007040
  • Fytikas MD, Kolios NP (1979). Preliminary heat flow map of Greece. In: Čermak V, Rybach L (editors). Terrestrial Heat Flow in Europe. Heidelberg, Germany: Springer, pp. 197-205.
  • Ganas A, Lekkas E, Kolligri M, Moshou A, Makropoulos K (2012). The 2011 Oichalia (SW Peloponnese, Greece) seismic swarm: geological and seismological evidence for EW extension and reactivation of the NNW-SSE striking Siamo fault. Bulletin of the Geological Society of Greece 46: 81-94. doi: 10.12681/ bgsg.10927
  • Ganas A, Pavlides SB, Sboras S, Valkaniotis S, Papaioannou S et al. (2004). Active fault geometry and kinematics in Parnitha Mountain, Attica, Greece. Journal of Structural Geology 26: 2103-2118. doi: 10.1016/j.jsg.2004.02.015
  • Grigoriadis VN, Tziavos IN, Tsokas GN, Stampolidis A (2016). Gravity data inversion for Moho depth modeling in the Hellenic area. Pure and Applied Geophysics 173 (4): 1223-1241. doi: 10.1007/ s00024-015-1174-y
  • Hansen FD, Carter NL (1982). Creep of selected crustal rocks at 1000 MPa. Transactions of the American Geophysical Union 63: 437.
  • Hatzfeld D, Kassaras I, Panagiotopoulos D, Amorese D, Makropoulos K et al. (1995). Microseimicity and strain pattern in northwestern Greece. Tectonics 14 (4): 773-785. doi: 10.1029/95TC00839
  • Hollenstein C, Müller MD, Geiger A, Kahle HG (2008). Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 449 (1-4): 17-40. doi: 10.1016/j.tecto.2007.12.006
  • Hurter S, Haenel R (editors) (2002). Atlas of Geothermal Resources in Europe. Luxembourg City, Luxembourg: Office for Official Publications of the European Communities.
  • Jackson J, McKenzie D, Priestley K, Emmerson B (2008). New views on the structure and rheology of the lithosphere. Journal of the Geological Society 165 (2): 453-465. doi: 10.1144/0016- 76492007-109
  • Jacobshagen V (editor) (1986). Geologie von Griechenland. 1st ed. Berlin, Germany: Gebrüder Borntraeger (in German).
  • Kassaras I, Kapetanidis V, Karakonstantis A (2016). On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece. Physics and Chemistry of the Earth, Parts A/B/C 95: 50-72. doi: 10.1016/j.pce.2016.03.012
  • Kassaras I, Kapetanidis V, Karakonstantis A, Kouskouna V, Ganas A et al. (2014). Constraints on the dynamics and spatiotemporal evolution of the 2011 Oichalia seismic swarm (SW Peloponnesus, Greece). Tectonophysics 614: 100-127. doi: 10.1016/j.tecto.2013.12.012
  • Kirby SH (1985). Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones. Tectonophysics 119 (1-4): 1-27. doi: 10.1016/0040-1951(85)90030-7
  • Kind R, Eken T, Tilmann F, Sodoudi F, Taymaz T et al. (2015). Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth 6: 971-984. doi: 10.5194/ se-6-971-2015
  • Kirby SH, Kronenberg AK (1987). Rheology of the lithosphere: selected topics. Reviews of Geophysics 25 (6): 1219-1244. doi: 10.1029/RG025i006p01219
  • Kopf A, Mascle J, Klaeschen D (2003). The Mediterranean Ridge: A mass balance across the fastest growing accretionary complex on Earth. Journal of Geophysical Research 108 (B8): 2372. doi: 10.1029/2001JB000473
  • Koukouvelas IK, Aydin A (2002). Fault structure and related basins of the North Aegean Sea and its surroundings. Tectonics 21: 1046. doi: 10.1029/2001TC901037
  • Kreemer C, Blewitt G, Klein EC (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems 15 (10): 3849-3889. doi: 10.1002/2014GC005407
  • Le Pichon X, Angelier J (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60 (1-2): 1-42. doi: 10.1016/0040- 1951(79)90131-8
  • Lyon-Caen H, Armijo R, Drakopoulos J, Baskoutass J, Delibassis N et al. (1988). The 1986 Kalamata (South Peloponnesus) earthquake: detailed study of a normal fault, evidences for east-west extension in the Hellenic arc. Journal of Geophysical Research 93: 14967-15000. doi: 10.1029/JB093iB12p14967
  • Makris J, Papoulia J, Yegorova T (2013). A 3-D density model of Greece constrained by gravity and seismic data. Geophysical Journal International 194 (1): 1-17. doi: 10.1093/gji/ggt059
  • Makropoulos K, Kaviris G, Kouskouna V (2012). An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth System Sciences 12 (5): 1425-1430. doi: 10.5194/nhess-12-1425-2012
  • McKenzie D (1972). Active tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society 30: 109-185. doi: 10.1111/j.1365-246X.1972.tb02351.x
  • McKenzie D, Jackson J, Priestley K (2005). Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters 233 (3-4): 337-349. doi: 10.1016/j. epsl.2005.02.005
  • Mercier JL (1976). La neotectonique. Ses methodes et ses buts. Un exemple: I’Arc Egéen (Méditerranée orientale). Revue de Géographie Physique et de Géologie Dynamique 18 (4): 323- 346 (in French).
  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research 2 (1): 49-71. doi: 10.1111/j.1365-2117.1989. tb00026.x
  • Mesimeri M, Karakostas V (2018). Repeating earthquakes in western Corinth Gulf (Greece): implications for aseismic slip near locked faults. Geophysical Journal International 215 (1): 659- 676. doi: 10.1093/gji/ggy301
  • Middleton TA, Copley A (2014). Constraining fault friction by reexamining earthquake nodal plane dips. Geophysical Journal International 196 (2): 671-680. doi: 10.1093/gji/ggt427
  • Mouchet JP, Mitchell A (editors) (1989). Abnormal Pressures While Drilling. 1st ed. Boussens, France: Elf Aquitaine.
  • Mountrakis D (2006). Tertiary and Quaternary tectonics of Greece. In: Dilek Y, Pavlides S (editors). Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Papers 409: 125-136.
  • Muço B (1994). Focal mechanism solutions for Albanian earthquakes for the years 1964-1988. Tectonophysics 231 (4): 311-323. doi: 10.1016/0040-1951(94)90041-8
  • Müller MD, Geiger A, Kahle HG, Veis G, Billiris H et al. (2013). Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009. Tectonophysics 597: 34-49. doi: 10.1016/j.tecto.2012.08.003
  • Nocquet JM (2012). Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 579: 220-242. doi: 10.1016/j.tecto.2012.03.037
  • NOA (2017). Full Catalogue 1964-2017. Athens, Greece: National Observatory of Athens. Available at www.gein.noa.gr/en/ seismicity/earthquake-catalogs.
  • Olhoeft GR, Johnson GR (1989). Densities of rocks and minerals. In: Carmichael RS (editor). Practical Handbook of Physical Properties of Rocks and Minerals. 1st ed. Boca Raton, FL, USA: CRC Press, pp. 1-38.
  • Papadimitriou P, Voulgaris N, Kassaras I, Kaviris G, Delibassis N et al. (2002). The Mw=6.0, 7 September 1999 Athens earthquake. Natural Hazards 27 (1): 15-33. doi: 10.1023/A:1019914915693
  • Papadopoulos GA, Ganas A, Pavlides S (2002). The problem of seismic potential assessment: Case study of the unexpected earthquake of 7 September 1999 in Athens, Greece. Earth, Planets and Space 54: 9-18. doi: 10.1186/BF03352417
  • Papanikolaou D (2013). Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics 595: 1-24. doi: 10.1016/j.tecto.2012.08.008
  • Papazachos C (1999). An alternative method for a reliable estimation of seismicity with an application in Greece and the surrounding area. Bulletin of the Seismological Society of America 89 (1): 111-119.
  • Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F et al. (2012). Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: implications for crustal dynamics and mantle flow. Geochemistry, Geophysics, Geosystems 13: Q09013. doi: 10.1029/2012GC004289
  • Petricca P, Barba S, Carminati E, Doglioni C, Riguzzi F (2015). Graviquakes in Italy. Tectonophysics 656: 202-214. doi: 10.1016/j.tecto.2015.07.001
  • Ranalli G (editor) (1995). Rheology of the Earth. 2nd ed. London, UK: Chapman and Hall.
  • Ranalli G, Murphy DC (1987). Rheological stratification of the lithosphere. Tectonophysics 132 (4): 281-295. doi: 10.1016/0040-1951(87)90348-9
  • Reicherter K, Hoffmann N, Lindhorst K, Krastel S, Fernández-Steeger T et al. (2011). Active basins and neotectonics: morphotectonics of the Lake Ohrid Basin (FYROM and Albania). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162 (2): 217- 234. doi: 10.1127/1860-1804/2011/0162-0217
  • Resor PG, Pollard DD, Wright TJ, Beroza GC (2005). Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake, Greece. Journal of Geophysical Research 110: B09402. doi: 10.1029/2004JB003263
  • Rigo A, de Chabalier JB, Meyer B, Armijo R (2004). The 1995 Kozani-Grevena (northern Greece) earthquake revisited: an improved faulting model from synthetic aperture radar interferometry. Geophysical Journal International 157: 727- 736. doi: 10.1111/j.1365-246X.2004.02220.x
  • Ring U, Glodny J, Will T, Thomson S (2010). The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annual Review of Earth and Planetary Sciences 38: 45-76. doi: 10.1146/annurev. earth.050708.170910
  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87: 289-343. doi: 10.1016/0031-0182(91)90140-M
  • Rolandone F, Bürgmann R, Nadeau RM (2004). The evolution of the seismic-aseismic transition during the earthquake cycle: constraints from the time-dependent depth distribution of aftershocks. Geophysical Research Letters 31: L23610. doi: 10.1029/2004GL021379
  • Royden LH, Papanikolaou DJ (2011). Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochemistry, Geophysics, Geosystems 12: Q03010. doi: 10.1029/2010GC003280
  • Rutter EH (1986). On the nomenclature of mode of failure transitions in rocks. Tectonophysics 122 (3-4): 381-387. doi: 10.1016/0040- 1951(86)90153-8
  • Sachpazi M, Laigle M, Charalampakis M, Diaz J, Kissling E et al. (2016). Segmented Hellenic slab rollback driving Aegean deformation and seismicity. Geophysical Research Letters 43: 651-658. doi: 10.1002/2015GL066818
  • Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annual Review of Earth and Planetary Sciences 39: 157-186. doi: 10.1146/annurev-earth-040610-133408
  • Scholz CH (1988). The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau 77 (1): 319-328. doi: 10.1007/BF01848693
  • Şengör AMC (1985). The story of Tethys: How many wives did Okeanos have? Episodes 8: 3-12.
  • Shelton G, Tullis JA (1981). Experimental flow laws for crustal rocks. Transactions of the American Geophysical Union 62: 396.
  • Sibson RH (1974). Frictional constraints on thrust, wrench and normal faults. Nature 249 (5457): 542. doi: 10.1038/249542a0
  • Sibson RH (1977). Fault rocks and fault mechanisms. Journal of the Geological Society 133 (3): 191-213. doi: 10.1144/ gsjgs.133.3.0191
  • Sibson RH (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America 72 (1): 151-163.
  • Sodoudi F, Kind R, Hatzfeld D, Priestley K, Hanka W et al. (2006). Lithospheric structure of the Aegean obtained from P and S receiver functions. Journal of Geophysical Research 111: B12307. doi: 10.1029/2005JB003932
  • Suppe J (2014). Fluid overpressures and strength of the sedimentary upper crust. Journal of Structural Geology 69: 481-492. doi: 10.1016/j.jsg.2014.07.009
  • Taymaz T, Jackson J, McKenzie DP (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International 106: 433-490. doi: 10.1111/j.1365-246X.1991. tb03906.x
  • Taymaz T, Westaway R, Reilinger R (2004). Active faulting and crustal deformation in the Eastern Mediterranean region. Tectonophysics 391 (1): 1-10. doi: 10.1016/S0040- 1951(04)00402-0
  • Tesauro M, Kaban MK, Cloetingh SA (2008). EuCRUST-07: A new reference model for the European crust. Geophysical Research Letters 35: L05313. doi: 10.1029/2007GL032244
  • Tesauro M (2009). An integrated study of the structure and thermomechanical properties of the European lithosphere. PhD, Vrije Universiteit, Amsterdam, the Netherlands.
  • Tiberi C, Diament M, Lyon Caen H, King T (2001). Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophysical Journal International 145 (3): 797- 808. doi: 10.1046/j.1365-246x.2001.01441.x
  • Tirel C, Gueydan F, Tiberi C, Brun JP (2004). Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth and Planetary Science Letters 228 (3-4): 267-280. doi: 10.1016/j.epsl.2004.10.023
  • Turcotte D, Schubert G (editors) (2014). Geodynamics. 3rd ed. Cambridge, UK: Cambridge University Press. van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE,
  • Wortel R (2005). Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33 (4): 325-328. doi: 10.1130/G20878.1
  • Vernant P, Reilinger R, McClusky S (2014). Geodetic evidence for low coupling on the Hellenic subduction plate interface. Earth and Planetary Science Letters 385: 122-129. doi: 10.1016/j. epsl.2013.10.018
  • Vilà M, Fernández M, Jiménez-Munt I (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490 (3-4): 152-164. doi: 10.1016/j. tecto.2010.05.003
  • Voulgaris N, Pirli M, Papadimitriou P, Kassaras J, Makropoulos K (2001). Seismotectonic characteristics of the area of western Attica derived from the study of the September 7, 1999 Athens earthquake aftershock sequence. Bulletin of the Geological Society of Greece 34 (4): 1645-1651. doi: 10.12681/bgsg.17274
  • Wells DL, Coppersmith JK (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84: 974-1002.
  • Wessel P, Smith WH (1991). Free software helps map and display data. Eos, Transactions American Geophysical Union 72 (41): 441-446.
  • Yolsal-Çevikbilen S, Taymaz T (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics 536: 61-100. doi: 10.1016/j.tecto.2012.02.019
  • Zelt BC, Taylor B, Sachpazi M, Hirn A (2005). Crustal velocity and Moho structure beneath the Gulf of Corinth, Greece. Geophysical Journal International 162 (1): 257-268. doi: 10.1111/j.1365-246X.2005.02640.x
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Aslıhan NASIF, Faik Erdeniz " ÖZEL, Derman DONDURUR

Özlem YILMAZ, Talip GÜNGÖR, Mine Sezgül KAYSERİ-ÖZER, Funda AKGÜN, Serdar MAYDA, Tanju KAYA, Atike NAZİK, Yeşim BÜYÜKMERİÇ

Stratigraphy of the Mio-Pleistocene sequence in the Göktepe region based on the fossil record (Muğla, SW Turkey)

Tanju KAYA, Serdar MAYDA, Yeşim BÜYÜKMERİÇ, Talip GÜNGÖR, Funda AKGÜN, Mine Sezgül KAYSERİ ÖZER, Özlem YILMAZ, Atike NAZİK

Paleoecological insights on latest Oligocene-early Miocene planktonic foraminifera from the J-Anomaly Ridge (IODP Hole U1406A)

Alessio FABBRINI, Luca Maria FORESI

Stable carbon and oxygen isotopes as environmental indicators of the Late Pleistocene in El Arenoso, Sonora, Northwest Mexico

Edith CIENFUEGOS-ALVARADO, Víctor Adrían PÉREZ CRESPO, Alejandro TERRAZAS-MATA, Pedro MORALES-PUENTE, Martha BENAVENTE, Francisco J. OTERO, Tamara CRUZ-Y-CRUZ

Rheological behaviour in continental and oceanic subduction: inferences for the seismotectonics of the Aegean Region

Massimiliano MAGGINI, Riccardo CAPUTO

Ahmet M. AKOĞLU

Resource estimation for Alpagut-Dodurga coal field and determination of spatial distribution of coal quality parameters

Yavuz GÜL, Oğuzhan KÜÇÜKKARASU

Seismic identification of gas hydrates: a case study from Sakarya Canyon, western Black Sea

Aslıhan NASIF, Faik Erdeniz ÖZEL, Derman DONDURUR

APMdisc: An online computer program for the geochemical discrimination of siliciclastic sediments from active and passive margins

John S. ARMSTRONG ALTRIN, María Abdelaly RIVERA GÓMEZ, Lorena DÍAZ GONZÁLEZ, Surendra P. VERMA