Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic setting

Petrographic and major and trace element compositions of Tanis sandstones from Tall San Al Hagr, Al Sharqiya Governorate, Egypt, have been investigated to determine their source, provenance, intensity of paleoweathering of the source rocks, and tectonic setting. Tanis sandstones are yellowish brown in color, siliceous, partly calcareous, and originated from sands deposited in fluvial channels. Texturally, Tanis sandstones are medium- to very coarse-grained, mature, and moderately sorted. Scarcity of feldspars indicates that the sandstone is extensively recycled from a distant source. Their average modal composition (Q99.75F0.03L0.22) classifies them as quartz arenites (quartzite), which is consistent with the geochemical study. Chemical analyses revealed that sandstones have high SiO2 and Fe2O3t and low Al2O3 and TiO2 values, which are consistent with the modal data. Sandstone samples are enriched in most trace elements such as Zr and Ba, and they are depleted in V, Pb, Sc, Rb, U, and Th. The petrography and geochemistry results suggest that Tanis sandstones were deposited in an intracratonic basin or a passive continental margin of a synrift basin. They were mainly derived from deeply weathered granitic-gneissic sources, supplemented by recycled sands from an associated platform. The CIA and CIW values (60.2 and 87.74, respectively) of the Tanis sandstones indicate moderate to intensive weathering either of the original source or during transport before deposition, and may reflect low-relief and warm humid climatic conditions in the source area. The heavy-mineral and trace element results reveal that the Gebel Ahmar quarry is the probable source for the Tanis sandstones.

___

  • Abd el Hady MM (1988). Durability of monumental sandstone in Upper Egypt. In: Marinos PG, Koukis GC, editors. Engineering Geology of Ancient Works, Monuments and Historical Sites. Rotterdam, the Netherlands: A.A. Balkema, pp. 825–831.
  • Abd el Hady MM (2000). The deterioration of Nubian sandstone blocks in the Ptolemaic temples in Upper Egypt. In: Proceedings of the 9th International Congress on the Deterioration and Conservation of Stone, Venice, Italy. Amsterdam, the Netherlands: Elsevier, pp. 783–792.
  • Abu-Zeid MM, Amer KM, El-Mohammady RA (1989). Petrology, mineralogy and provenance of sandstones of ‘‘Nubia” facies in west central Sinai. Earth Sciences Series 3, Middle East Research Centre, Ain Shams University: 20–34.
  • Abu-Zeid, MM, Amer KM, Yanni NN, El-Wekeil SS (1991). Petrology, mineralogy and sedimentation of the Paleozoic sequence of Gabal Qattar, Wadi Feiran, Sinai, Egypt. J Geol 34: 145–169.
  • Ahmad I, Chandra R (2013). Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66: 73–89.
  • Al-Habri OA, Khan MM (2008). Provenance, diagenesis, tectonic setting and geochemistry of Tawil sandstone (Lower Devonian in central Saudi Arabia, J Asian Earth Sci 33: 278–287.
  • Amer KM, Abu-Zeid MM, El-Mohammady RA (1989). Particle-size distribution and depositional environment of the sandstones of ‘‘Nubia” facies in west central Sinai. Earth Sciences Series 3, Middle East Research Centre, Ain Shams University: 146–160.
  • Amireh BS (1991). Mineral composition of the Cambrian -Cretaceous Nubian series of Jordon: provenance, tectonic setting and climatological implication. Sediment Geo1 71: 99–119.
  • Armstrong-Altrin JS (2014) Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev (in press).
  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga, JJ, Carranza-Edwards A, Garcia D, Eby N, Balaram V, Cruz-Ortiz NL (2012). Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance. Chem Erde Geochem 72: 345–362.
  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004). Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74: 285–297.
  • Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza- Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Cont Shelf Res 95: 15–26.
  • Armstrong-Altrin JS, Nagarajan R, Lee YI, Kasper-Zubillaga JJ, Córdoba- Saldaña LP (2014) Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implication for provenance. Turk J Earth Sci 23: 533–558.
  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013). Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source- area weathering, provenance, and tectonic setting. CR Geosci 345: 185–202.
  • Armstrong-Altrin JS, Verma SP (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sediment Geol 177: 115–129.
  • Asiedu DK, Suzui S, Shibata T (2000). Provenance of sandstones from the Lower Cretaceous Sasayama Group, inner zone of southwest Japan. Sediment Geol 131: 9–24.
  • Aston BG, Harrell JA, Shaw I (2000). Stone. In: Nicholson PT, Shaw I, editors. Ancient Egyptian Materials and Technology. Cambridge, UK: Cambridge University Press, pp. 5–77.
  • Basu A, Young S, Suttner LJ, James WC, Mack CH (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. J Sediment Petrol 45: 873– 882.
  • Beitak M (1975). Die Identifizierung der Stadtanlage Tall el-Daba – Qantir mit. Auris und der Ramsesstadt, 2: 1–21 (in German).
  • Bhatia MR (1983). Plate tectonics and geochemical composition of sandstones. J Geol 91: 611–627.
  • Bhatia MR, Crook KAW (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petr 92: 181–193.
  • Blatt H, Middleton G, Murray R (1980). Origin of Sedimentary Rocks. 2nd ed. Englewood Cliffs, NJ, USA: Prentice Hall.
  • Carver RE (1971). Procedures in Sedimentary Petrology. New York, NY, USA: John Wiley.
  • Cox R, Lowe DR, Cullers RL (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Ac 59: 2919–2940.
  • Cullers RL (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Ac 58: 4955–4972.
  • Cullers RL (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos 51: 181–203.
  • Cullers RL, Podkovyrov VN (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res 104: 77–93.
  • Dabbagh ME, Rogers JJ (1983). Depositional environments and tectonic signiŞcance of the Wajid Sandstone of southern Saudi Arabia. J Afr Earth Sci: 47–57.
  • Dar MA (1998). Mineralogy and chemistry of the mangrove vegetation in Hurghada-Quseir area, Red Sea, Egypt. MSc, Suez Canal University, Ismailia, Egypt.
  • Dickinson WR (1970). Interpreting detrital modes of greywacke and arkose. J Sediment Petrol 40: 695–707.
  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. J Geol Soc Amer 94: 222–235.
  • Dickinson WR, Suczek CA (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologists 63: 2164–2182.
  • Dott RH (1964). Wackes, greywacke and matrix: what approach to immature sandstone classification. J Sediment Petrol 34: 625–632.
  • EAIS (2005). Egyptian Antiquities Information System Project. Geographical Information System, Cahiers of Sharqiya Governorate. Cairo, Egypt: Supreme Council of Antiquities.
  • Fedo CM, Nesbitt HW, Young GM (1995). Unraveling the effects of K metasomatism in sedimentary rocks and paleosols with implications for palaeoweathering conditions and provenance. J Geol 23: 921–924.
  • Folk RL (1966). A review of grain-size parameters. Sedimentology 6: 73–96.
  • Folk RL (1974). Petrology of Sedimentary Rocks. Austin, TX, USA: Hemphill Publications.
  • Friedman GM, Sander JE (1978). Principals of Sedimentology. New York, NY, USA: John Wiley.
  • Garver JI, Royce PR, Smick TA (1996). Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine- grained sediments with an ultramafic source. J Sediment Res 66: 100–106.
  • Gazzi P (1966). Le arenarie del fl ysch sopracretaceo dell’Appennino modensese: Correlazioni con il flysch di Monghidoro. Mineralogica et Petrographica Acta 12: 69–97 (in Italian).
  • Harrell JA (2002). Pharaonic stone quarries in the Egyptian deserts. In: Friedman R, editor. Egypt and Nubia – Gifts of the Desert. London, UK: British Museum Press, pp. 232–243.
  • Harrell JA, Madbouly MI (2006). An ancient quarry for siliceous sandstone at Wadi Abu Aggag, Egypt. Sahara 17: 51–58.
  • Heizer RF, Stross F, Hester TR, Albee A, Perlman J, Asaro F, Bowman H (1973). The colossi of Memnon revisited. Science 184: 1219–1225.
  • Heldal T, Bloxam EG, Storemyr P, Kelany A (2005). The geology and archaeology of the ancient silicified sandstone quarries at Gebel Gulab and Gebel Tingar, Aswan, Egypt. Marmora. International Journal of Archaeology, History and Archaeometry of Marbles and Stones 1: 11–35.
  • Hermina M, Klitzsch E, List FK (1989). Stratigraphic Lexicon and Explanatory Notes to the Geological Map of Egypt 1: 500.000. Cairo, Egypt: Conoco Inc.
  • Herron MM (1988). Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58: 820–829.
  • Hirst DM (1962). The geochemistry of modern sediments from the Gulf of Paria. II. The location and distribution of trace elements. Geochim Cosmochim Ac 26: 1174–1187.
  • Hofer G, Wagreich M, Neuhuber S (2013). Geochemistry of fine-grained sediments of the Upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geosci Front 4: 449–468.
  • Ingersoll RV, Bulard TF, Ford RL, Grimm JP, Pickle JP, Sares SW (1984). The effect of grain size on detrital modes: a test of the Gazzi- Dickinson point-counting method. J Sediment Petrol 54: 103–116.
  • Ingersoll RV, Suczek CA (1979). Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. J Sediment Petrol 49: 1217–1228.
  • Jafarzadeh M, Harami RM, Amini A, Mahboubi A, Farzaneh F (2013). Geochemical constraints on the provenance of Oligocene-Miocene siliciclastic deposits (Zivah Formation) of NW Iran: implications for the tectonic evolution of the Caucasus. Arab J Geosci 7: 4245– 4263.
  • Keller WD (1956). Clay minerals as influenced by environments of their formation. American Association of Petroleum Geologists 40: 2689–2710.
  • Khanchuk AI, Nevstruev VG, Berdnikov NV, Nechaev VP (2013). Petrochemical characteristics of carbonaceous shales in the eastern Bureya massif and their precious-metal mineralization. Russ Geol Geophys 54: 627–636.
  • Klemm DD, Klemm R (2001). The building stones of ancient Egypt – a gift of its geology. J Afr Earth Sci 33: 631–642.
  • Klemm DD, Klemm R (2008). Stone and Stone Quarries in Ancient Egypt. London, UK: British Museum Press.
  • Klemm DD, Klemm R, Steclaci L (1984). Die pharaonischen Steinbrüche des Silifizierten Sandsteins in Ägypten und die Herkunft der Memnon-Kolosse. Mitteilungen des Deutschen Archaologischen Instituts Abteilung Kairo 40: 207–220 (in German).
  • Klemm R, Klemm DD (1993). Steine und Steinbruche im alten Agypten. Berlin, Germany: Springer Verlag (in German).
  • Knox RWOB, Stadelmann R, Harrell JA, Heldal T, Sourouzian H (2009). Mineral fingerprinting of Egyptian siliceous sandstones and the quarry source of the Colossi of Memnon. In: Abu-Jaber N, Bloxam EG, Degryse P, Heldal T, editors. Quarry Scapes: Ancient Stone Quarry Landscapes in the Eastern Mediterranean. Oslo, Norway: Geological Survey of Norway Special Publication, pp. 77–85.
  • Kroonenberg SB (1994). Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: Proceedings of the 29th International Geological Congress, Part A: 69–81.
  • Lonnie TP (1982). Mineralogic and chemical composition of marine and nonmarine transitional clay beds on south shore of Long Island, New York. J Sediment Petrol 52: 529–536.
  • Martinet G (1992). Grès et mortiers du temple d’ Amon à Karnak (Haute Egypte). Etude des altérations, aide à la restauration. Paris, France: Laboratoire Central des Ponts et Chaussées.
  • McBride EF (1963). A classiŞcation of common sandstones. J Sediment Petrol 33: 664–669.
  • McLennan SM, Hemming S, McDaniel DK, Hanson GN, (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJ, Basu A, editors. Processes Controlling the Composition of Clastic Sediments. Boulder, CO, USA: Geological Society of America Special Paper, pp. 21–40.
  • Morton AC (1985). Heavy minerals in provenance studies. In: Zuffa GG, editor. Provenance of Arenite. Dordrecht, the Netherlands: Reidel, pp. 249–277.
  • Nagarajan R, Armstrong-Altrin JS, Nagendra R, Madhavaraju J, Moutte J (2007). Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: implications for paleoweathering conditions, provenance and source rock composition. J Geol Soc India 70: 297–312.
  • Nesbitt HW, Young GM (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717.
  • Nowrouzi Z, Moussavi-Harami R, Mahboubi A, Gharaie MHM, Ghaemi F (2013). Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering. Arab J Geosci 7: 2793–2813.
  • Pettijohn FJ (1975). Sedimentary Rocks. 3rd ed. New York, NY, USA: Harper and Row.
  • Pettijohn FJ (1984). Sedimentary rocks. 3rd ed. New Delhi, India: India CBS Publ. and Dist.
  • Pettijohn FJ, Potter PE, Siever R (1987). Sand and Sandstone. New York, NY, USA: Springer.
  • Pittman ED (1970). Plagioclase as an indicator of provenance in sedimentary rocks. J Sediment Petrol 40: 591–598.
  • Potter PE (1978). Petrology and chemistry of modern Big River sands. J Geol 86: 423–449.
  • Roser BP, Korsch RJ (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94: 635–650.
  • Roser BP, Korsch RJ (1988). Provenance signatures of sandstone- mudstone suites determined using discrimination function analysis of major element data. Chem Geol 67: 119–39.
  • Said R (1990). The Geology of Egypt. Rotterdam, the Netherlands: A.A. Balkema.
  • Schwab FL (1975). Framework mineralogy and chemical composition of continental margin type sandstone. Geology 3: 487–490.
  • Shadan M, Hosseini-Barzi M (2013). Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabas block. Rev Mex Cien Geol 30: 80–95.
  • Stadelmann R (1984). Die Herkunft der Memnon-Kolosse: Heliopolis oder Aswan? Mitteilungen des Deutschen Archaologischen Instituts Abteilung Kairo 40: 291–296.
  • Suttner LJ, Basu A, Mack GH (1981). Climate and the origin of quartz arenites. J Sediment Petrol 51: 235–246.
  • Suttner LJ, Dutta PK (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. J Sediment Petrol 56: 329–345.
  • Tao H, Wang Q, Yang X, Jiang L (2013). Provenance and tectonic setting of Late Carboniferous clastic rocks in west Junggar, Xinjiang, China: a case from the Hala-alat mountains. J Asian Earth Sci 64: 210–222.
  • Tawadros EE (2001). Geology of Egypt and Libya. Rotterdam, the Netherlands: A.A. Balkema.
  • Taylor SR, McLennan SM (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell.
  • Tsuzuki Y, Kawabe I (1983). Polymorphic transformations of kaolin minerals in aqueous solutions. Geochim Cosmochim Ac 47: 59–66.
  • Turekian KK, Michael HC (1960). The geochemistries of chromium, cobalt and nickel. Int Geol Cong 1: 14–27.
  • Varille A (1933). L’inscription dorsale du colosse méridionale de Memnon. Annales du Service des Antiquites de l’Egypte 33: 85–94 (in French).
  • Vdačný M, Vozárová A, Vozár J (2013). Geochemistry of the Permian sandstones from the Malužiná Formation in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting. Geol Carpath 64: 23–38.
  • Verma SP, Armstrong-Altrin JS (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355: 117–180.
  • Weltje GJ, Meijer XD, De Boer PL (1998). Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing: Basin Research 10: 129–153.
  • Young SW (1976). Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. J Sediment Petrol 46: 595–603.
  • Zaid SM (2006). Geo-environmental assessment of east Nile Delta, Egypt. PhD, Zagazig University, Zagazig, Egypt.
  • Zaid SM (2012). Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J Afr Earth Sci 66–67: 56–71.
  • Zaid SM (2013). Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt. J Afr Earth Sci 85: 31–52.
  • Zaid SM, Gahtani FA (2015). Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turk J Earth Sci 24: 72–98.