Petrogenesis, geochemistry, and tectonic setting of a basaltic body within the Gercus Formation of northern Iraq: first record for Eocene anorogenic volcanic activity in the region

  An abnormally odd and rare occurrence of a basaltic body has been discovered in the middle of the Gercus Formation within the large, double-plunging NW-SE trending Bekhair Anticline to the north of Duhok city, northern Iraq. This is the first discovery of such a volcanic body within the widely exposed Gercus Formation in northern Iraq, southeastern Turkey, and western Iran. This volcanic body, named by the authors the Gercus Basalt, has a long tabular/lenticular shape with a total length of ~4.5 km and a thickness ranging between 1 to 16 m. It is exposed on both limbs of the anticline and has a conformable relation with the terrigenous beds of the Gercus Formation. The basalt is greenish to grayish black in color, vesicular, amygdaloidal and porphyritic in texture, and consists of feldspar (Ab85An2Or13), pyroxene (Wo49En40Fs11), olivine (Fo87.2-Fa12.6-Tp0.2), and their alteration products. Postemplacement hydrothermal fluids resulted in pervasive alteration of the Gercus Basalt and introduction of copper mineralization filling joints, fractures, and adjacent vesicles. The alteration processes are dominated by calcitization, zeolitization, serpentinization, chloritization, silicification, iddingsitization, and copper mineralization. Seventeen basalts have been analyzed for 63 major and trace elements including REEs and PGEs. The Gercus Basalt has very similar geochemical compositions to that of OIB. Excluding Cr, Co, Ni, and PGEs, it is enriched in all other analyzed major and trace elements relative to primitive mantle. The chondrite-normalized distribution of REEs shows a smooth pattern, high La/Yb(N) ratio of 23, and LREE enrichment relative to HREE, indicating alkaline magmatic origin. The studied rocks are basanites, alkaline basalts, melanephelinites, and picrites with an OIB-like anorogenic geochemical signature. The Gercus Basalt was derived from amphibole-bearing garnet-lherzolite subcontinental asthenospheric mantle, enriched with silicate metasomatism.

___

  • Abdel-Rahman AM, Lease NA (2012). Petrogenesis of Cenozoic mafic-ultramafic alkaline lavas from the Tigris volcanic field, NE Syria. Geol Mag 149: 1-18.
  • Abdel-Rahman AM, Nassar PE (2004). Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geol Mag 141: 545-563.
  • Abdulla HH (2013). Rock slope analysis in Duhok Governorate, Bekhair Anticline by using GIS technique. Journal of Al- Nahrain University 16: 46-54.
  • Abdulrahman AS (2016). Mineralogy and geochemistry of odd basaltic rocks capping burnt hills in Injana area, Hemrin South Mountain, northern Iraq. MSc, Salahaddin University, Erbil, Iraq.
  • Adam J, Green TH, Sie SH (1993). Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chem Geol 109: 29-49.
  • Agrawal S, Guevara M, Verma SP (2004). Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. Int Geol Rev 46: 575-594.
  • Agrawal S, Guevara M, Verma SP (2008). Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. Int Geol Rev 50: 1057-1079.
  • Ahmadzadeh G, Jahangiri A, Lentz D, Mojtahedi M (2010). Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. J Asian Earth Sci 39: 37-50.
  • Ajirlu MS, Moazzen M, Hajialioghli R (2016). Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: an ophiolite perspective. Central European Geology 59: 1-27.
  • Alavi M (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304: 1-20.
  • Al-Azzawi NK, Al-Hubiti ST (2009). The fold style variations of Baikher Anticline - Northern Iraq. Iraqi J Earth Sci 9: 1-20.
  • Allen MB, Kheirkhah M, Neill I, Emami MH, McLeod CL (2013). Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan Province, Iran. J Petrol 54: 887-911.
  • Azizi H, Moinevaziri H (2009). Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J Geodyn 47: 167-179.
  • Basi MA (1973). Geology of Injana area, Hemrin South. MSc, Baghdad University, Baghdad, Iraq.
  • Basi MA, Jassim SZ (1974). Baked and fused Miocene sediments from Injana area, Hemrin South, Iraq. Journal of the Geological Society of Iraq 7: 1-14.
  • Bolgi TV (1961). Petrol Bölgesi seksiyon ölçmeleri AR/TPO/261 nolu saha ile Reşan-Dodan arasıbatısındaki sahanın strüktürel etüdleri: TPAO Arama Grubu, Rapor No. 162. Ankara, Turkey: TPAO (in Turkish).
  • Buket E, Temel A (1998). Major-element, trace-element, and Sr– Nd isotopic geochemistry and genesis of Varto-Mus volcanic rocks, Eastern Turkey. J Volcanol Geoth Res 85: 405-422.
  • Cabanis B, Lecolle M (1989). Le diagramme La/l0-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. CR Acad Sci Paris 309: 2023–2029 (in French).
  • Cirrincione R, Fiannacca P, Lustrino M, Romano V, Tranchina A (2014). Late Triassic tholeiitic magmatism in Western Sicily: A possible extension of the Central Atlantic Magmatic Province (CAMP) in the Central Mediterranean area? Lithos 188: 60-71.
  • Dai LQ, Zheng F, Zhao ZF, Zheng YF (2018). Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China. Lithos 302-303: 86-98.
  • Dilek Y, Imamverdiyev N, Altunkaynak S (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52: 536-578.
  • Dilek Y, Rassios AHE, Furnes H, Shallo M (2007). Mesozoic– Cenozoic tectonics and Tethyan evolution of the western Balkan Peninsula: an ophiolite perspective. Geophysical Research Abstracts 9: 9-27.
  • Duggen S, Hoernle K, van den Bogaard P, Garbe-Schönberg D (2005). Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46: 1155-1201.
  • Dupuy C, Liotard JM, Dostal J (1992). Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim Cosmochim Ac 56: 2417-2423.
  • Duran O, Şemşir D, Sezgin I, Perinçek D (1988). Güneydoğu Anadolu’da Midyat ve Silvan Gruplarının stratigrafisi, sedimantolojisi ve petrol potansiyeli. TPJD Bülteni 1-2: 99-126 (in Turkish).
  • El-Akhal H (2004). Contribution to the petrography, geochemistry, and tectonic setting of the basalt flows of the Umm-Qais plateau, North Jordan. Geol Bull Turkey 47: 1-11.
  • El-Khafaji SJR (1989). Rare-earth elements geochemistry of the industrial clay deposits in Iraq. MSc, Baghdad University, Baghdad, Iraq.
  • Floyd PA, Winchester JA (1975). Magma type and tectonic setting discrimination using immobile trace elements. Earth Planet Sci Lett 27: 211-218.
  • Fouad SF (2015). Tectonic map of Iraq scale 1:1,000,000, 3rd edition, 2102. Iraqi Bulletin of Geology and Mining 11: 1-8.
  • Furman T, Graham D (1999). Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48: 237-262.
  • Ghazi J, Moazzen M (2015). Geodynamic evolution of the Sanandaj- Sirjan Zone, Zagros Orogen, Iran. Turkish J Earth Sci 24: 513- 528.
  • Göçmengil G, Karacik Z, Genç ŞC, Billor MZ (2018). 40 Ar‒ 39 Ar geochronology and petrogenesis of postcollisional trachytic volcanism along the İzmir-Ankara-Erzincan Suture Zone (NE, Turkey). Turkish J Earth Sci 27: 1-31.
  • Güven A, Dinçer A, Tuna ME, Çoruh T (1991). Stratigraphic evolution of the Campanian-Paleocene autochthonous succession of the Southeast Anatolia. In: Ozan Sungurlu Symposium Proceedings, Ankara, Turkey, pp. 238-261.
  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48: 2341-2357.
  • Hoernle K, Schmincke HU (1993). The role of partial melting in the 15 Ma geochemical erosion of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34: 599-626.
  • Hofmann AW, Jochum KP, Seufert M, White WM (1986). Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79: 33-45.
  • Homke S, Vergés J, Serra-Kiel J, Bernaola G, Sharp I, Garcés M, Montero-Verdú I, Karpuz R, Goodarzi MH (2009). Late Cretaceous–Paleocene formation of the proto-Zagros foreland basin, Lurestan Province, SW Iran. Geol Soc Am Bull 121: 963- 978.
  • Humphris SE, Thompson G (1978). Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Ac 42: 127-136.
  • Ismail SA, Kettanah YA, Chalabi SN, Ahmed AH, Arai S (2014). Petrogenesis and PGE distribution in the Al- and Cr-rich chromitites of the Qalander Ophiolite, northeastern Iraq: Implications for the tectonic environment of the Iraqi Zagros Suture Zone. Lithos 202-203: 21-36.
  • Jassim SZ, Buday T (2006). Middle Palaeocene–Eocene megasequence AP10. In: Jassim SZ, Goff JV, editors. Geology of Iraq. Prague, Czech Republic: Dolin, pp. 155-168.
  • Jassim SZ, Suk M, Waldhausrovd J (2006). Magmatism and metamorphism in Zagros Suture. In: Jassim SZ, Goff JV, editors. Geology of Iraq. Prague, Czech Republic: Dolin, pp. 212-231.
  • Kettanah YA, Ismail SA (2018). Petrogenesis of Alta’ameem meteorite (Iraq) inferred from major, trace, REE and PGE+Au content. J Afr Earth Sci 139: 260-274.
  • Krienitz MS, Haase KE, Mezger K, Shaikh-Mashail MA (2007). Magma genesis and mantle dynamics at the Harrat Ash Shamah Volcanic Field (Southern Syria). J Petrol 48: 1513-1542.
  • Krishnamurthy P, Gopalan K, MacDougall JD (2000). Olivine compositions in picrite basalts and the Deccan volcanic cycle. J Petrol 41: 1057-1069.
  • Kürkçüoğlu B, Pickard M, Şen P, Hanan BB, Sayit K, Plummer C, Sen E, Yurur T, Furman T (2015). Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere. Lithos 232: 229-241.
  • Kuschel E, Smith IEM (1992). Rare earth mobility in young arc- type volcanic rocks from northern New Zealand. Geochim Cosmochim Ac 56: 3951-3955.
  • LaTourrette T, Hervig RL, Holloway JR (1995). Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sc Lett 135: 13-30.
  • Lease NA, Abdel-Rahman AM (2008). The Euphrates volcanic field, northeastern Syria: petrogenesis of Cenozoic basanites and alkali basalts. Geol Mag 145: 685-701.
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745-750.
  • Le Bas MJ, Le Maitre RW, Woolley AR (1992). The construction of the Total Alkali-Silica chemical classification of volcanic rocks. Miner Petrol 46: 1-22.
  • Le Maitre RW (2002). Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge, UK: Cambridge University Press.
  • Li L, Xiong XC, Liu XC (2017). Nb/Ta fractionation by amphibole in hydrous basaltic systems: implications for arc magma evolution and continental crust formation. J Petrol 58: 3-28.
  • Lustrino M, Keskin M, Mattioli M, Kavak O (2012). Heterogeneous mantle sources feeding the volcanic activity of Mt. Karacadağ (SE Turkey). J Asian Earth Sci 46: 120-139.
  • Lustrino M, Keskin M, Mattioli M, Lebedev VA, Chugaev A, Sharkov A, Kavak O, (2010). Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadağ, SE Turkey. Eur J Mineral 22: 343-362.
  • Lustrino M, Sharkov E (2006). Neogene volcanic activity of western Syria and its relationship with Arabian plate kinematics. J Geodyn 42: 115-139.
  • Lustrino M, Wilson M (2007). The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci Rev 81: 1-65.
  • Ma GSK, Malpas J, Xenophontos C, Gavin HN, Chan GHN (2011). Petrogenesis of Latest Miocene–Quaternary continental intraplate volcanism along the Northern Dead Sea Fault System (Al Ghab–Homs Volcanic Field), Western Syria: evidence for lithosphere–asthenosphere interaction. J Petrol 52: 401-430.
  • Maxon JH (1936). Geology and Petroleum Possibilities of the Hermis Dome: MTA Derleme No. 255. Ankara, Turkey: MTA.
  • McCoy-West AJ, Baker JA, Faure K, Wysoczanski R (2010). Petrogenesis and origins of Mid-Cretaceous continental intraplate volcanism in Marlborough, New Zealand: implications for the long-lived HIMU Magmatic Mega- province of the SW Pacific. J Petrol 51: 2003-2045.
  • McDonough WF, Sun SS (1995). The composition of the Earth. Chem Geol 120: 223-253.
  • Meschede M (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56: 207-218.
  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988). Nomenclature of pyroxenes. Am Mineral 73: 1123-1133.
  • Numan N (1997). A plate tectonic scenario for the Phanerozoic successions in Iraq. Iraqi Geological Journal 30: 85-110.
  • Özdemir Y, Karaoğlu Ö, Tolluoğlu AÜ, Guleç N (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. Chem Geol 226: 189-211.
  • Pankhurst RJ (1977). Open system fractionation and incompatible element variations in basalts. Nature 268: 36-38.
  • Pearce JA (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Thorp, RS, editor. Andesites: Orogenic Andesites and Related Rocks. New York, NY, USA: John Wiley and Sons, pp. 525-548.
  • Pearce JA (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ, editors. Continental Basalts and Mantle Xenoliths. Nantwich, UK: Shiva Publications, pp. 230-249.
  • Pearce JA (1996). A user’s guide to basalt discrimination diagrams. In: Wyman DA, editor. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. St. John’s, Canada: Geological Association of Canada Short Course Notes, pp. 79-113.
  • Pearce JA, Cann JR (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sc Lett 19: 290-300.
  • Polat A, Kerrich R, Casey JF (1997). Geochemistry of Quatemary basalts erupted along the east Anatolian and Dead Sea fault zones of southern Turkey: implications for mantle sources. Lithos 40: 55-68
  • Powell W, Zhang M, O’Reilly SY, Tiepolo M (2004). Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75: 141-171.
  • Price RC, Wilson RE, Frey FA, Gray CM, Taylor SR (1991). The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chem Geol 93: 245-265.
  • Rudnick RL, Fountain DM (1995). Nature and composition of continental crust: a lower crustal perspective. Rev Geophys 33: 267-309.
  • Rudnick RL, McDonough WF, Chappell BW (1993). Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sc Lett 114: 463- 475.
  • Sayit K, Bedi Y, Tekin UK, Göncüoglu MC, Okuyucu C (2017). Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: implications for the geodynamic evolution of the Northern Neotethys. Lithos 268-271: 102-113 .
  • Seyrek A, Demir T, Pringle MS, Yurtmen S, Westaway RWC, Beck A, Rowbotham G (2007). Kinematics of the Amanos Fault, southern Turkey, from Ar/Ar dating of offset Pleistocene basalt flows: transpression between the African and Arabian plates. Geol Soc Spec Publ 290: 255-284.
  • Sharkov EV, Chernyshev LV, Devyatkin EV, Dodonov AE, Ivanenko VV, Karpenko MI, Leonov YG, Novikov VM, Hanna S, Khatib K (1994). Geochronology of Late Cenozoic Basalts in Western Syria. Petrology 2: 385-394.
  • Shaw JE, Baker JA, Menzies MA, Thirlwall MF, Ibrahim KM (2003). Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. J Petrol 44: 1657- 1679.
  • Sun SS, McDonough WF (1989). Chemical and isotope systematic of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42: 313-345.
  • Torkian A, Salehi N, Siebel W (2016). Geochemistry and petrology of basaltic lavas from NE-Qorveh, Kurdistan province, Western Iran. Neues Jb Miner Abh 193: 95-112.
  • Verma SP, Agrawal S (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Rev Mex Cienc Geol 28: 24-44.
  • Verma SP, Guevara M, Agrawal S (2006). Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J Earth Syst Sci 115: 485-528.
  • Verma SP, Rivera-Gómez MA (2017). Transformed major element based multidimensional classification of altered volcanic rocks. Episodes 40: 295-303.
  • Verma SP, Rivera-Gómez MA, Díaz-González L, Pandarinath K, Amezcua-Valdez A, Rosales-Rivera M, Verma SK, Quiroz- Ruiz A, Armstrong-Altrin JA (2017). Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments. Lithos 278: 321- 330.
  • Verma SP, Rivera-Gómez MA, Díaz-González L, Quiroz-Ruiz A (2016). Log-ratio transformed major-element based multidimensional classification for altered High-Mg igneous rocks. Geochem Geophys Geosy 17: 4955-4972.
  • Vigouroux N, Wallace PJ, Kent AJ (2008). Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49: 1589-1618.
  • Wang Y, Zhao ZF, Zheng YF, Zhang JJ (2011). Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos 125: 940-955.
  • Wilson M, Bianchini G (1999). Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions. Geol Soc Spec Publ 156: 141-168.
  • Winchester JA, Floyd PA (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20: 325-343.
  • Wood DA (1980). The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas on the British Tertiary Volcanic Province. Earth Planet Sc Lett 50: 11- 30.
  • Yaseen IAAB (2014). Contribution to the petrography, geochemistry, and petrogenesis of Zarqa-Ma’in Pleistocene alkali olivine basalt flow of Central Jordan. International Journal of Geosciences 5: 657-672.
  • Yeganeh BY, Feiznia S, van Loon AJT (2012). Sedimentary environment and palaeogeography of the ?Palaeocene–Middle Eocene Kashkan Formation, Zagros fold-thrust belt, SW Iran. Geologos 18: 13-36.
  • Yilmaz Y, Güner Y, Saroğlu F (1998). Geology of the quaternary volcanic centres of the east Anatolia. J Volcanol Geoth Res 85: 173-210.
  • Zhang JJ, Zheng YF, Zhao ZF (2009). Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110: 305-326.