Palaeoenvironmental and chronological constraints on the Tuğlu Formation (Çankırı Basin, Central Anatolia, Turkey)

The Çankırı Basin, located in the northern part of the Central Anatolian Plateau, is a large Tertiary basin where thick Miocene to Quaternary continental sediments overlay the Cretaceous-Tertiary units. This investigation focuses on the Tuğlu Formation, an Upper Miocene succession mainly composed of dark grey silty and organic rich clays. The type section of Tuğlu has been sampled for an array of multidisciplinary analyses. The palaeontological proxies included ostracod, foraminifer, nannoplankton, pollen, molluscs, charophytes, small mammal assemblages, fish, and crab remains. The abiotic parameters studied were: palaeomagnetism and environmental magnetism, stable carbon and oxygen isotope ratios (on ostracods and bulk sediment samples), strontium isotope ratios (on ostracods and foraminifera), and major elemental composition of the sediments. All analysed proxies point to a continental setting characterised by permanent water bodies affected by strong salinity oscillations. A shallow saline lake developed in a permanent freshwater lake. Barren layers, potentially linked to a short subaerial exposure, mark the end of the saline lake and the transition to a fluvial environment. Geochemical analysis confirms aridity-humidity oscillations as recorded by the micropalaeontological proxies. Analysis of small mammal assemblages refined the chronology of the Tuğlu Formation, with the onset of the deposition at the base of the mammal zone MN9 (around 11 Ma) and continuous deposition until the MN11 zone (around 8 Ma). The stable oxygen isotope records from the Tuğlu section point to Miocene delta18O water values consistent with subdued topography where no prominent mountain belts were yet developed at the northern plateau margin. If correct, this suggests that at least until the end of the deposition of the Tuğlu Formation, the Çankırı Basin did not yet experience rain shadow conditions, and the regional surface uplift of the area most likely occurred after 8 Ma.

Palaeoenvironmental and chronological constraints on the Tuğlu Formation (Çankırı Basin, Central Anatolia, Turkey)

The Çankırı Basin, located in the northern part of the Central Anatolian Plateau, is a large Tertiary basin where thick Miocene to Quaternary continental sediments overlay the Cretaceous-Tertiary units. This investigation focuses on the Tuğlu Formation, an Upper Miocene succession mainly composed of dark grey silty and organic rich clays. The type section of Tuğlu has been sampled for an array of multidisciplinary analyses. The palaeontological proxies included ostracod, foraminifer, nannoplankton, pollen, molluscs, charophytes, small mammal assemblages, fish, and crab remains. The abiotic parameters studied were: palaeomagnetism and environmental magnetism, stable carbon and oxygen isotope ratios (on ostracods and bulk sediment samples), strontium isotope ratios (on ostracods and foraminifera), and major elemental composition of the sediments. All analysed proxies point to a continental setting characterised by permanent water bodies affected by strong salinity oscillations. A shallow saline lake developed in a permanent freshwater lake. Barren layers, potentially linked to a short subaerial exposure, mark the end of the saline lake and the transition to a fluvial environment. Geochemical analysis confirms aridity-humidity oscillations as recorded by the micropalaeontological proxies. Analysis of small mammal assemblages refined the chronology of the Tuğlu Formation, with the onset of the deposition at the base of the mammal zone MN9 (around 11 Ma) and continuous deposition until the MN11 zone (around 8 Ma). The stable oxygen isotope records from the Tuğlu section point to Miocene delta18O water values consistent with subdued topography where no prominent mountain belts were yet developed at the northern plateau margin. If correct, this suggests that at least until the end of the deposition of the Tuğlu Formation, the Çankırı Basin did not yet experience rain shadow conditions, and the regional surface uplift of the area most likely occurred after 8 Ma.

___

  • Aguilar, J.P., Calvet, M. & Michaux, J. 1991. Présence de Progonomys (Muridae, Rodentia, Mammalia) dans une association de rongeurs de la fin du Miocène moyen (Castelnou 1B; Pyrénéesorientales, France). Geobios 24, 504–508.
  • Akgün, F., Kayseri, M.S. & Akkiraz, M.S. 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene–
  • Miocene period in western and central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology 253, 56– Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A. & Mosbrugger, V. 20 Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 276– 2 Alberdi, M.T., López, N., Morales, J., Sesé, C. & Soria, D. 1981. Bioestratigrafía y biogeografía de la fauna de Mamíferos de Los Valles de Fuentidueña (Segovia). Estudios Geologicos 37, 503–511.
  • Armstrong-Altrin, J. & Verma, S., 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177, 115–129.
  • Babinot, J.F. 2003. Zonocypris digitalis (Ostracoda, Crustacea), a new species from the Fuvelian (non marine Campanian) of Provence (south-east France). Revue de micropaléontologie 46, 3–
  • Balevicius, A. 2001. Distribution of Lychnothamnus barbatus community in Lithuania. Biologija 2, 70–73.
  • Benda, L., Innocenti, F., Mazzuoli, R., Radiacati, F. & Steffens P. 1974. Stratigraphic and radiometric data of the Neogene in northwest Turkey (Cenozoic and Lignites in Turkey, 16). Zeitschrift der Deutschen Geologischen Gesellschaft 125, 183–193.
  • Benda, L. & Meulenkamp, J.E. 1990. Biostratigraphic correlations in the eastern Mediterranean Neogene 9. Sporomorph associations and event stratigraphy of the Eastern Mediterranean Neogene. Newsletter Stratigraphy 23, 1–10.
  • Bhatia, S.B., Soulié-Märsche, I. & Gemayel, P. 1998. Late Pliocene and Early Pleistocene charophyte floras of the Hirpur Formation, Karewa Group, Kashmir, India. N. Jb. Geol. Paläontol., Abh. 210, 185–209.
  • Birgili, Ş., Yoldaş, R. & Ünalan, G. 1975. Çankırı-Çorum havzasının jeolojisi ve petrololanakları. MTA Report No: 5621, Ankara.
  • Böhme, M., Ilg, A. & Winklhofer M. 2008. Late Miocene “washhouse” climate in Europe. Earth and Planetary Science Letters 275, 393–401.
  • Boltovskoy, E., Scott D.B. & Medioli F.S. 1991. Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters: a review. Journal of Paleontology 65, 175–185.
  • Boomer, I., Horne D.J. & Slipper I.J. 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park, L.E. & Smith, A.J. (eds) Bridging the Gap. Trends in the Ostracode Biological and Geological Sciences, Paleontological Society Paper 9, 153–180.
  • Cann, J.H. & De Deckker, P. 1981. Fossil Quaternary and living foraminifera from athalassic (non-marine) saline lakes, southern Australia. Journal of Paleontology 55, 660–670.
  • Çelmen, O. & Çelik, M. 2009. Hydrochemistry and environmental isotope study of the geothermal water around Beypazari granitoids. Environmental Geology 58, 1689–1701.
  • Clavero, M., Blanco-Garrido, F. & Prenda, J. 2007. Population and microhabitat effects of interspecific interactions on the endangered Andalusian toothcarp (Aphanius baeticus). Environmental Biology of Fishes 78, 173–182.
  • Coad, B.W. 2000. Distribution of Aphanius species in Iran. Journal of the American Killifish Association 33, 183–191.
  • Cosentino, D.,  Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N., Lucifora, S. & Strecker, M.R. 2012. Late
  • Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bulletin 124, 133–145. Cyr, A.J., Currie, B.S. & Rowley, D.B. 2005. Geochemical evolution of Fenghuoshan Group lacustrine carbonates, North-Central
  • Tibet: implications for the paleoaltimetry of the Eocene Tibetan Plateau. The Journal of Geology 113, 517–533. Dam, J.A. van, Alcalá, L., Alonso Zarza, A.M., Calvo, J.P., Garcés, M. & Krijgsman, W. 2001. The Upper Miocene mammal record from the Teruel-Alfambra region (Spain): the MN system and continental Stage/Age concepts discussed. Journal of Vertebrate Paleontology 21, 367–385.
  • Day, R., Fuller, M. & Schmidt, V.A. 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence.
  • Physics of The Earth and Planetary Interiors 13, 260–267. Dunlop, D.J. 2002. Theory and application of the Day plot (Mrs/
  • Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, 1– Dunlop, D.J. & Carter-Stiglitz, B. 2006. Day plots of mixtures of superparamagnetic, single-domain, pseudosingle-domain, and multidomain magnetites. Journal of Geophysical Research 111, 1–10.
  • Erdtman, G. 1943. An Introduction to Pollen Analysis. Chronica
  • Botanica, Waltham, MA, USA. Erünal-Erentöz, L. 1958. Mollusques du Néogène des Bassins de
  • Karaman, Adana et Hatay (Turquie). Publications de l’Institut d’Études et de Recherches Minières de Turquie, sér. C 4, 1–232. Fejfar, O., Heinrich, W.D., Kordos, L. & Maul, L.C. 2011. Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia). Palaeontologia Electronica 14, 38.
  • Fortelius, M., Werdelin, L., Andrews, P., Bernor, R.L., Gentry, A., Humphrey, L., Mittmann, W. & Viranta, S. 1996. Provinciality, diversity, turnover and paleoecology in land mammal faunas of the later Miocene of western Eurasia In: Bernor, R., Fahlbusch, V. & Mittmann W. (eds), The Evolution of Western Eurasian
  • Neogene Mammal Faunas. Columbia University Press, New York, 414–448. Freels, D. 1980. Limnische Ostrakoden aus Jungtertiär und Quartär der Türkei. Geologisches Jahrbuch B 39, 3–169.
  • Gannser, A. 1974. The ophiolitic mélange, a world-wide problem on
  • Tethyan examples. Eclogae Geologicae Helvetiae 67/3, 479–507. Ghetti, P., Anadón, P., Bertini, A., Esu, D., Gliozzi, E., Rook, L. & Soulié-Märsche I. 2002. The Early Messinian Velona
  • Basin (Siena, Central Italy): palaeoenvironmental and palaeobiogeographical reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 5, 1–33. Graf, D.L. & Cummings, K.S. 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73, 291–314.
  • Grambast, N. & Soulié-Märsche, I. 1972. Sur l’ancienneté et la diversification des Nitellopsis (Charophytes). Paléobiologie Continentale III (3), 1–14.
  • Gross, M., Minati, K., Danielopol, D. & Piller, W. 2008. Environmental changes and diversification of Cyprideis in the Late Miocene of the Styrian Basin (Lake Pannon, Austria). Senckenbergiana lethaea 88, 161–181.
  • Grove, K.W., Silverman, M.R., Rasmussen, D.R., Penfield, G.T., Gurnert, W.R. & Grateral, V. 2004. Geophysical evaluation and exploration potential of the Haymana-Polatli and Cankiri Basins, Central Anatolia, Turkey. AAPG Search and Discovery Article #90024©2000, AAPG Regional International Conference, İstanbul, Turkey.
  • Harzhauser, M. & Mandic, O. 2008. Neogene lake systems of Central and South-Eastern Europe: faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 417–434.
  • Hayward, B.W. & Hollis, C.J. 1994. Brackish foraminifera in New Zealand: a taxonomic and ecologic review. Micropaleontology 40: 185–222.
  • Helmdach, F.F. 1988. The ostracode fauna of the Ait Kandoula region, systematic description. In: Jacobshagen, V.H. (ed), The Atlas System of Morocco. Springer-Verlag, Berlin, 405–432.
  • Hohenegger, J. 2005. Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeography, Palaeoclimatology, Palaeoecology 217, 115– 1
  • Howarth, R.J. & McArthur, J.M. 1997. Statistics for strontium isotope stratigraphy: A robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for the derivation of numerical age. Journal of Geology 105, 441–456.
  • McArthur, J.M., Howarth, R.J. & Bailey, T.R., 2001. Strontium isotope stratigraphy: LOWESS Version 3: Best-fit line to the marine Srisotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109, 155–169.
  • Janz, H. & Vennemann, T. 2005. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 216– 2
  • Jin, Z., Bickle, M., Chapman, H., Yu, J., Greaves, M., Wang, S. & Chen, S. 200 An experimental evaluation of cleaning methods for fossil ostracod Mg/Ca and Sr/Ca determination. Journal of Paleolimnology 36, 211–128. Jiříček, R. & Říha, J. 1991. Correlation of ostracod zones in the Paratethys and Tethys. Saito Ho-on Kai Special Publications (Proceedings of Shallow Tethys) 3, 435–457.
  • Kappelman, J., Duncan, A., Feshea, M., Lunkka, J.P., Ekart, D., Mcdowell, F., Ryan, T. & Swisher C.C. 3rd. 2003. Chronology of the Sinap Formation. In: Fortelius, M., Kappelman, J., Sen, S. & Bernor, R.L. (eds), Geology and Palaeontology of the Miocene Sinap Formation, Turkey. Columbia University Press, New York, 41–66.
  • Karadenizli, L. 2011. Oligocene to Pliocene palaeogeographic evolution of the Çankırı-Çorum Basin, central Anatolia, Turkey. Sedimentary Geology 237, 1–29.
  • Katsuhara, M. & Tazawa, M. 1986. Salt tolerance in Nitellopsis obtusa. Protoplasma 135, 155–161.
  • Kaymakci, N. 2000. Tectono-stratigraphical Evolution of the Çankırı
  • Basin (Central Anatolia, Turkey). PhD Thesis, Universiteit Utrecht, Utrecht. Kaymakçı, N., Özmutlu, Ş., Van Dijk, P.M. & Özçelik, Y. 2010. Surface and subsurface characteristics of the Çankırı Basin
  • (Central Anatolia, Turkey): integration of remote sensing, seismic interpretation and gravity.  Turkish Journal of Earth Sciences 19, 79–100. Kaymakçi, N., White, S.H. & van Dijk, P.M. 2000. Paleostress inversion in a multiphase deformed area: kinematic and structural evolution of the Çankırı basin (central Turkey), Part 1 – northern area. In: Bozkurt, E., Winchester, J.A. &
  • Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications 173, 295–323. Kaymakçi, N., White, S.H. & van Dijk, P.M. 2003. Kinematic and structural development of the Çankırı Basin (Central Anatolia, Turkey). A paleostress inversion study. Tectonophysics 364, 85−113.
  • Kayseri, M.S & Akgün, F. 2008. Palynostratigraphic, palaeovegetational and palaeoclimatic investigations on the Miocene deposits in Central Anatolia (Çorum Region and Sivas Basin). Turkish Journal of Earth Sciences 17, 361–403.
  • Kim, S.T. & O’Neil, J.R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et
  • Cosmochimica Acta 61, 3461–3475.
  • Kissel, C., Laj, C., Poisson, A. & Görür, N. 2003. Paleomagnetic reconstruction of the Cenozoic evolution of the Eastern
  • Mediterranean. Tectonophysics 362, 199–217. Klaus, S. & Gross, M. 2010. Synopsis of the fossil freshwater crabs of
  • Europe (Brachyura: Potamoidea: Potamidae). Neues Jahrbuch für Geologie und Paläontologie, Abh. 256, 39–59. Kovar-Eder, J., Jechorek, H., Kvaček, Z. & Parashiv, V. 2008. The integrated plant record: an essential tool for reconstructing
  • Neogene zonal vegetation in Europe. Palaios 23, 97–11. Krause, W. 1985. Über die Standortsansprüche und das
  • Ausbreitungsverhalten der Stern-Armleuchter-alge Nitellopsis obtusa (Desvaux) J. Groves. Carolinea 42, 31–42. Krause, W. 1997. Charales (Charophyceae). Süsswasserflora von
  • Mitteleuropa. Band 18. Gustav Fischer Verlag, Jena, 1–202. Krstić, N. 1972. Genus Candona (Ostracoda) from Congeria Beds of
  • Southern Pannonian Basin, (Summary). Monographs Vo. CDL, The Section of Natural and Mathematical Sciences 39, 1–200 [in Serbian with extended English summary]. Krstić, N. 2006. Pliocene ostracodes of the Paludinian Beds in the Pannonian Plain, Serbian part. Herald of the Natural History Museum, 1–409.
  • Kröpelin, S. & Soulié-Märsche, I. 1991. Charophyte remains from
  • Wadi Howar as evidence for deep mid-Holocene freshwater lakes in Eastern Sahara (NW Sudan). Quaternary Research 36, 210–223. Le Maitre, R.W. 1976. The chemical variability of some common igneous rocks. Journal of Petrology 17, 589–637.
  • Leng, M.J. & Marshall, J.D. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811–831.
  • Lev, L., Boaretto, E., Heller, J., Marco, S. & Stein, M. 2007. The feasibility of using Melanopsis shells as radiocarbon chronometers, Lake Kinneret, Israel. Radiocarbon 49, 1003–1015.
  • Lüdecke, T., Mikes, T., Rojay, B., Cosca, M.A. & Mulch, A. Dynamic Middle Cenozoic paleoenvironments of the Central Anatolian Plateau: insights from stable isotope records and tuff geochronology of continental deposits. Turkish Journal of Earth Sciences, this volume. Machordom, A., Araujo, R., Nagel, K.O., Reis, J. & Toledo, C. 2006. A preliminary phylogeny of the European Unionoidea. In: Malchus, N. & Pons, J.M. (eds), International Congress on Bivalves. Organisms Diversity and Evolution 6, Electr. Suppl. 16, 1–53.
  • Mädler, K. & Staesche, U. 1979. Fossile Charophyten aus dem Känozoikum (Tertiär und Quartär) der Türkei. Geologisches Jahrbuch B33, 81–157.
  • Mai, D.H. 1991. Palaeofloristic changes in Europe and the confirmation of the Arctotertiary-Palaeotropical geofloral concept. Review of Paleobotany and Palynology 68, 29–36.
  • Mandelstam, M.I., Markova, L.P., Rozyeva, T.R. & Stepanaitys, N.E. 19 Ostracoda of the Pliocene and Post-Pliocene Deposits of Turkmenistan. Turkmenistan Geological Institute, Ashkhabad, 1–288 [in Russian]. Meisch, C. 2000. Freshwater Ostracoda of Western and Central Europe. In: Schwoerbel, J. & Zwick, P. (eds), Süßwasserfauna von Mitteleuropa 8. Spektrum Akademischer Verlag, Heidelberg-Berlin, 1–522.
  • Meriç, E., Avşar, N., Görmüş, M., & Bergin, F. 2004. Twin and triplet forms of recent benthic foraminifera from the eastern Aegean Sea, Turkish coast. Micropaleontology 50, 297–300.
  • Meyers, P.A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry 27, 213–250.
  • Micheels, A., Bruch, A.A., Eronen J., Fortelius, M., Harzhauser, M., Utescher, T. & Mosbrugger, V. 2011. Analysis of the heat transport mechanism from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 337–350.
  • Mikes, T., Dunkl, I., von Eynatten, H., Báldi-Beke, M. & Kázmér, M. 200 Calcareous nannofossil age constraints on Miocene flysch sedimentation of the Outer Dinarides (Slovenia, Croatia, Bosnia-Herzogovina, Montenegro). In: Siegesmund, S., Fügenschuh, B. & Froitzheim, N. (eds), Tectonic Aspects of the Alpine-Dinaride-Carpathian System, Geological Society of London, Special Publication 298, 335–363. Mikes, T., Gerdes, A., Hudáčková, N. & Mulch, A. 2011. 87 Sr/ 86 Sr isotope ratios in single benthic foraminifera by LA-MCICPMS. Mineralogical Magazine, Goldschmidt Conference Abstracts 75, 14
  • Morkhoven, F.P.C.M. van 1963. Post-Palaeozoic Ostracoda. Vol. II, Generic Descriptions. Elsevier, Amsterdam, 1–478.
  • Mosbrugger, V. & Utescher, T. 1997. The coexistence approach — a method for quantitative reconstructions of Tertiary terrestrial paleoclimate data using the plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134, 61–86.
  • Murray, J.W. 1973. Distribution and Ecology of Living Benthic
  • Foraminiferids. Heinemann, London, 1–288. Murray, J.W. 2006. Ecology and Applications of Benthic Foraminifera.
  • Cambridge University Press, Cambridge, 1–426. Nardo, J.D. 1827. Prodromus observationum et disquisitionum ichthyologiae Adriaticae. Giornale di Fisica, Chimica, Storia naturale, Medicine ed Arti. Pavia, Italy 2, 22–40.
  • Nesbitt, H.W. & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.
  • Nesbitt, H.W. & Young, G.M. 1984. Prediction of some weathering trends of plutonic and volkanic rocks based on thermodynamic and kinetic considerations, Geochimica et Cosmochimica Acta 48, 1523–1534.
  • Olteanu, R. 1995. Dacian ostracodes. In: Marinescu, F. & Papaianopol, I. (eds), Chronostratigraphie und Neostratotypen. Neogene der Zentrale Paratethys, Bd. IX. Dacien, Editura Academiei
  • Române, Bucharest, 268–385. Olteanu, R. 2011. Atlas of the Pannonian and Pontian ostracods from the Eastern area of the Pannonian Basin. Geo-Eco-Marina 17, 135–177.
  • Palmer, C.A., Tuncalı, E., Dennen, K.O., Coburn, T.C. & Finkelman, R.B. 2004. Characterization of Turkish coals: a nationwide perspective. International Journal of Coal Geology 60, 85–115.
  • Palmer, M.R. Helvaci, C. & Fallick A.E. 2004. Sulphur, sulphate and strontium isotope composition of Cenozoic Turkish evaporites.
  • Chemical Geology 209, 341–356. Ponder, R.W. &  Glendinning, I.G. 1974. The magnesium content of some miliolacean foraminifera in relation to their ecology and classification. Palaeogeography, Palaeoclimatology, Palaeoecology 15, 29–32.
  • Rochette, P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology 9, 1015-1020.
  • Rojay, B. 2012. Tectonic evolution of the Cretaceous Ankara
  • Ophiolitic Mélange during the Late Cretaceous to pre-Miocene interval in Central Anatolia, Turkey. Journal of Geodynamics 59, 1016/j.jog.2012.06.006.
  • Rojay, B., Altıner, D., Özkan Altıner, S., Önen, P., James, S. & Thirwall, M. 2004. Geodynamic significance of the Cretaceous pillow basalts from North Anatolian Ophiolitic Mélange Belt
  • (Central Anatolia, Turkey): geochemical and paleontological constrains. Geodinamica Acta 17/5, 349–361. Rotstein, Y. 1984. Counterclockwise rotation of the Anatolian Block. Tectonophysics 108, 71–91.
  • Sagnotti, L. 1998. Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors 105, 73–93.
  • Schemmel, F., Mikes, T., Rojay, B. & Mulch, A; (2013). Towards stable isotope paleoaltimetry of Central Anatolia: A perspective from modern meteoric waters. American Journal of Science 313, 61–80.
  • Schildgen, T.F., Cosentino, D., Bookhagen, B., Niedermann, S., Yildirim, C., Echtler, H.P., Wittmann, H. & Strecker, M.R. 20 Multi-phase uplift of the southern margin of the Central Anatolian plateau: a record of tectonic and upper mantle processes. Earth and Planetary Science Letters 317–318, 85–95. Scott, D.B., Medioli F.S. & Schafer, C.T., 2001. Monitoring in Coastal Environments Using Foraminifera and Thecamoebian. Cambridge University Press, Cambridge, 1–177.
  • Sen, S. 2003. Muridae and Gerbillidae (Rodentia). In: Fortelius, M., Kappelman, J., Sen, S. & Bernor, R.L. (eds), Geology and Paleontology of the Miocene Sinap Formation, Turkey. Columbia University Press, New York, 125–140.
  • Şengör, A.M.C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.
  • Sen Gupta, B.K. 2002. Modern  Foraminifera. Kluwer Academic, Dordrecht, 1–384.
  • Sgarrella, A.F. & Moncharmont-Zei, M. 1993. Benthic foraminifera in the Gulf of Naples (Italy): systematic and autoecology. Bollettino della Societa Paleontologica Italiana 32, 145–264.
  • Soulié-Märsche, I. 1989. Etude comparée de gyrogonites de Charophytes actuelles et fossiles et phylogénie des genres actuels. Imprimerie des Tilleuls, Millau, 1–237.
  • Soulié-Märsche, I. 1993. Diversity of aquatic environments in NE Africa as shown by fossil charophytes. In: Thorweihe, H. & Schandelmeier, R. (eds), Geoscientific Research in Northeast Africa. Taylor & Francis, Abingdon, 575–579.
  • Soulié-Märsche, I., Benammi, M. & Gemayel, P. 2002. Biogeography of living and fossil Nitellopsis (Charophyta) in relationship to new finds from Morocco. Journal of Biogeography 29, 1703– 17
  • Spezzaferri, S. 2004. Foraminiferal paleoecology and biostratigraphy of the Grund Beds (Molasse Basin–Lower Austria). Geologica Carpathica 55, 155–164.
  • Spötl, C. & Vennemann, T.W. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17, 1004–1006.
  • Stancheva, M. 1966. Notes on the stratigraphy and the ostracode fauna from the Pliocene and post-Pliocene in the district of the Silistra. Bulletin of Strashimir Dimitrov Institute of Geology, Ser. Paleontologie 15, 205–207.
  • Straub, E.W. 1952. Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm an der Donau. Geologisches Jahrbuch 66, 433–524.
  • Suzin, A.V. 1956. Ostracoda from Tertiary Deposits of the North Caucasus. Gostoptekhizdat, Moscow, 1–191 [In Russian].
  • Talbot, M.R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology (Isotope Geoscience Section) 80, 261–279.
  • Taner, G. 1994. Paleotemperature findings from the Romanian and Bakunian stages of Çanakkale obtained from isotope analyses on mollusc shells. Türkiye Jeoloji Kurultayi Bildiri Özleri 47, 12–
  • Taylor, S.R. & McLennan, S.M. 1985. The Continental Crust: Its
  • Composition and Evolution. Blackwell, Oxford. Tekin, E. 2001. Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey).
  • Turkish Journal of Earth Sciences 10, 35–49. Tolosana-Delgado, R. 2012. Uses and misuses of compositional data in sedimentology. Sedimentary Geology 280, 60–79.
  • Ünay, E., Bruijn, H. de & Sarac, G. 2003. A preliminary zonation of continental Neogene of Anatolia based on rodents. Deinsea 10, 539–547.
  • Villwock, W. 1977. Das Genus Aphanius Nardo 1827. Journal deutsche Killifisch Gemeinschaft 9, 165–185. von Eynatten, H., Tolosana-Delgado, R. & Karius, V. 2012. Sediment generation in modern glacial settings: grain-size and sourcerock control on sediment composition. Sedimentary Geology 280, 80–92.
  • Walanus, A. & Nalepka, D. 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta
  • Palaeobotanica Suppl. 2, 659–661. Wessels, W., Theocharopoulos, K.D., De Bruijn, H. & Ünay, E. 2001.
  • Myocricetodontinae and Megacricetodontini (Rodentia) from the lower Miocene of NW Anatolia. Lynx 32, 271–388. Whatley, R.C. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In: De
  • Deckker, P., Colin, J.P. & Peypouyet, J.P. (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, 245–256. Wildekamp, R.H. 1993. A  World of Killies. Atlas of the Oviparous
  • Cyprinodontiform Fishes of the World, Vol. 1. American Killifish Association, Mishawaka IN, USA, 1–311. Witt, W. 2010. Late Miocene non-marine ostracods from the Lake
  • Küçükçekmece region, Thrace (Turkey). Zitteliana A 50, 89– Yildirim, C., Schildgen, T.F., Echtler, H., Melnick, D. & Strecker, M.R. 20 Late Neogene orogenic uplift in the Central Pontides associated with the North Anatolian Fault - implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30, TC5005, DOI: 10.1029/2010TC002756.
  • Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Skawińska, K., Stuchlik, L., Słodkowska, B., Ważyńska, H. & Sadowska A. 1994a. Taxonomical revision of selected pollen and spores taxa from Neogene deposits. Acta Palaeobotanica Suppl. 1, 5–30.
  • Ziembińska-Tworzydło, M., Grabowska, I., KohlmanAdamska, A.,  Skawińska, K., Stuchlik, L., Słodkowska, B., Ważyńska,  H. & Sadowska A. 1994b.
  • Checklist of selected genera and species of spores and pollen grains ordered in morphological system. Acta Palaeobotanica, Suppl. 1, 31–56. Taxonomy of Characeae from the Tuğlu section. Order CHARALES Lindley 1836
  • Family Characeae L. Cl. Richard 1815
  • Genus Nitellopsis Hy 1889
  • Nitellopsis (Tectochara) merianii (A. Braun ex Unger 1850) Grambast & Soulié-Märsche, 1972 1850 Chara meriani Al. Braun ex Unger, p. 50 1954 Tectochara meriani (Al. Braun ex Unger)
  • Grambast & Grambast, p. 668 1972 Nitellopsis (Tectochara) meriani (Al. Braun ex
  • Unger) Grambast & Soulié-Märsche, p. 11 1979 Tectochara meriani (Al. Braun ex Unger)
  • Grambast 1954; Mädler & Staesche, p. 106 1997 Nitellopsis (Tectochara) merianii merianii (Al.
  • Braun ex Unger) Grambast & Soulié-Märsche, 1972, Soulié-Märsche et al., p. 146–148, Figs 5, 6. Description: Big, strongly calcified gyrogonites, size from 1000 to 1360 µm (average 1186 µm) in length and 760 to 1200 (average: 1012) µm in width. In lateral view, the outline of the gyrogonites varies from inversely pearshaped to globular (average ISI: 118) with the main body prolonged by a rather short truncate column or conically pointed. Apex flattened in lateral view; apical nodes more or less protruding but spiral cells clearly narrowing at the apical periphery, apical nodes variable; 8–10, mostly 9 spiral turns visible in lateral view; spiral cells smooth; calcification varying from concave to flat or strongly convex. Like other Miocene populations of N. merianii, the gyrogonites from the Tuğlu population show a majority of truncate basis with a broad basal funnel (60%). Another basal morphology (25%) comprises specimens with regularly diminished basis pointing downwards and surrounding the basal opening in a deep hollow. The present gyrogonites are slightly bigger and larger than Nitellopsis megarensis Soulié-Märsche 1979 described from the Pliocene in Turkey (Rückert et al. 2002) and Late
  • Pliocene in Kashmir (Bhatia et al. 1998). Genus Lychnothamnus Rupr. v. Leonhardi emend A.
  • Braun Lychnothamnus barbatus (Meyen) v. Leonhardi 1863 1989 var. antiquus nov. var. Soulié-Märsche 1989, p. 155, Pl. XXXVII, figs 1–9. 1979 = Amblyochara anatolica Mädler & Staesche 1979, p. 95, Pl. 4, figs 11–14.
  • Description: Gyrogonites of medium size, average of 850 µm high and 700 µm wide; shape mainly nearly rounded with constantly concave spiral cells separate by protruding simple sutures; rare specimens with double sutures; 9–10 turns visible in lateral view. Apex flattened; spiral cells not modified or slightly depressed at the apical zone. Sutures tending to become double around the small basal opening, where they form a star-like basal funnel. Soulié-Märsche (1989) established the synonymy of genus Amblyochara Grambast with the extant genus
  • Lychnothamnus and provided a reference diagram of the biometrical values of the gyrogonites of L. barbatus. The gyrogonites from the Tuğlu section display the same characters as the formerly described Amblyochara anatolica by Mädler and Staesche (1979), whose figures showed the same apical structure and the typical starlike basal funnel. Sample TU21 also showed very rare gyrogonites with double sutures similar to Amblyochara bicarinata (Mädler and Staesche 1979), suggesting that the latter may be probably only a variant of L. barbatus antiquus.
  • A. anatolica was recorded from Oligocene to basal Quaternary (Calabrian) with Sekköy as the type locality. Genus Chara Linnaeus Chara cf. molassica Straub 1952 1979 Charites molassica (Straub) Horn af Rantzien 1959, Mädler & Staesche, p. 85, Pl. 1 Fig. 1–5. 1989 Chara molassica Straub, Soulié-Märsche 1989, p. 1
  • Sample 21 of the Tuğlu section displayed only 3 gyrogonites of genus Chara. These medium-sized specimens (c. 600 µm high and 420 µm wide) display the typical ovoid Chara morphology and are tentatively attributed to Chara molassica. The gyrogonites of Chara molassica consist of very simple ovoid specimens very frequent all over the European Miocene. They must be considered at least the ancestor of, if even not identical to, living Chara vulgaris L. Already Mädler and Staesche (1979) have noted the close similarity of Chara molassica with the gyrogonites of the living Chara vulgaris (cited as Chara foetida).
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Palaeoenvironmental and chronological constraints on the Tuğlu Formation (Çankırı Basin, Central Anatolia, Turkey)

İlaria MAZZINI, Natália HUDÁCKOVÁ, Peter JONIAK, Marianna KOVÁCOVÁ, Tamás MIKES, Andreas MULCH, F. Bora ROJAY, Stella LUCIFORA, Daniela ESU, İngeborg SOULIÉ-MÄRSCHE

Middle-Upper Miocene paleogeography of southern Turkey: insights from stratigraphy and calcareous nannofossil biochronology of the Olukpınar and Başyayla sections (Mut-Ermenek Basin)

Paola CIPOLLARI, Eva HALÁSOVÁ, Kemal GÜRBÜZ, Domenico COSENTINO

Cenozoic tectonics of the Tuz Gölü Basin (Central Anatolian Plateau, Turkey)

David FERNÁNDEZ-BLANCO, Giovanni BERTOTTI, T. Attila ÇİNER

Messinian paleoenvironmental changes in the easternmost Mediterranean Basin: Adana Basin, southern Turkey

Costanza FARANDA, Elsa GLIOZZI, Paola CIPOLLARI, Francesco GROSSI, Güldemin DARBAŞ

Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: a case study from the Tuz Gölü Basin, Turkey

Erman ÖZSAYIN, T. Attila ÇİNER, F. Bora ROJAY, R. Kadir DİRİK, Daniel MELNICK, David FERNÁNDEZ-BLANCO

Paleomagnetic rotations in the Late Miocene sequence from the Çankırı Basin (Central Anatolia, Turkey): the role of strike-slip tectonics

Stella LUCIFORA, Francesca CIFELLI, F. Bora ROJAY, Massimo MATTEI

Messinian forced regressions in the Adana Basin: a near-coincidence of tectonic and eustatic forcing

Ayhan ILGAR, Wojciech NEMEC, Aynur HAKYEMEZ, Erhan KARAKUŞ

Stable isotope-based reconstruction of Oligo-Miocene paleoenvironment and paleohydrology of Central Anatolian lake basins (Turkey)

Tina LÜDECKE, Tamás MIKES, F. Bora ROJAY, Michael A. COSCA, Andreas MULCH

Central Anatolian Plateau, Turkey: incision and paleoaltimetry recorded from volcanic rocks

Erkan AYDAR, H. Evren ÇUBUKÇU, Erdal ŞEN, Lütfiye AKIN