Origin of the pleonaste-bearing mafic–ultramafic rocks from the Armutlu peninsula, NW Turkey

Al-rich spinels were rarely reported compared to Cr-spinels, which were mostly observed in ophiolitic rocks. Pleonaste [(Mg, Fe2+)Al2O4], which is an Al-rich spinel, was observed in the ophiolitic mafic-ultramafic rocks tectonically located in the Early Cretaceous accretionary complex, at the eastern part of the Armutlu peninsula, NW Turkey. The ophiolitic mafic-ultramafic rocks have cumulate character, and most of them are represented by peridotite and pyroxenite. Pleonaste was observed in pyroxenites and gabbros of the ophiolitic rocks. Pyroxenites consist mainly of clinopyroxene + orthopyroxene + amphibole ± olivine + spinel. Gabbros are composed of clinopyroxene + orthopyroxene + amphibole + plagioclase + spinel. Pleonaste in these rocks lies parallel to the magmatic layers and is distinguished by its emerald greenish color under the microscope. Pleonastes have high Al2O3 (59.65-62.24 wt.%) and low Cr2O3 (0.05-1.32 wt.%) contents with Mg# and Fe3+# ranging from 54.23 to 59.77 and 3.83 to 4.28, respectively. Petrographical observations and the pressure?temperature (P-T) pseudosection modelling suggest that pleonaste in the mafic-ultramafic rocks from the study area crystallized during magmatic processes. Presence of amphibole and Ca-rich (An % 85-88) plagioclase in these rocks suggests that the ophiolitic rocks, located in the Early Cretaceous accretionary complex at the eastern part of Armutlu peninsula, formed from an arc-related hydrous magma source.

___

  • Akbayram K, Okay AI, Satır M (2013). Early Cretaceous closure of the intra-Pontide Ocean in western Pontides (northwestern Turkey). J Geodyn 65: 38-55.
  • Amortegui A, Jaillard E, Lapierre H, Martelat JE, Bosch D, Bussy F (2011). Petrography and geochemistry of accreted oceanic fragments below the Western Cordillera of Ecuador. Geochem J 45: 57-78.
  • Arai S 1994. Characterization of spinel peridotites by olivine– spinel compositional relationships: review and interpretation. Chemical Geol 113: 191-204.
  • Arai S, Okamura H, Kadoshima K, Tanaka C, Suzuki K, Ishimaru S (2011). Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc 20: 125-137.
  • Babu EVSSK, Kumar KV, Pyle DM (1997). Spinel (hercynite) adcumulate from the Chimakurti gabbro-anorthosite pluton, Prakasam District, Andhra Pradesh, India: evidence for plagioclase buoyancy and magma mixing. Curr Sci 73: 441- 444.
  • Baldwin JA, Powell R, Brown M, Moraes R, Fuck RA (2005). Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis–Itauçu Complex, central Brazil. J Metamorph Geol 23: 511-531.
  • Berger J, Femenias O, Ohnenstetter D, Plissart G, Mercier JC (2010). Origin and tectonic significance of corundum–kyanite– sapphirine amphibolites from the Variscan French Massif Central. J Metamorph Geol 28: 341-360.
  • Brey GP, Köhler T (1990). Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31: 1353-1378.
  • Bucher M, Frey K (2002). Petrogenesis of Metamorphic Rocks. 7th ed. Berlin, Germany: Springer-Verlag.
  • Chen C, Su BX, Uysal I, Avcı E, Zhang PF, Xiao Y, He YS (2015). Iron isotopic constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite, southern Turkey. Chemical Geol 417: 115-124.
  • Claeson DT (1998). Coronas, reaction rims, symplectites and emplacement depth of the Rymmen gabbro, Transscandinavian Igneous Belt, southern Sweden. Mineral Mag 62: 743-757.
  • Claeson DT, Meurer WP (2004). Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole- bearing gabbroic cumulates. Contrib Mineral Petrol 147: 288- 304.
  • Çelik ÖF, Gürer ÖF, Aldanmaz E, Spell T, Öz İ (2009). Isotopic and geochemical constraints for the amphibolitic rocks of Armutlu Peninsula and Almacıkdağ. In Abstracts, 62nd Geological Congress of Turkey, p. 466.
  • Çelik ÖF, Marzoli, A, Marschik R, Chiaradia M, Mathur R (2018). Geochemical, mineralogical and Re-Os isotopic constraints on the origin of Tethyan oceanic mantle and crustal rocks from the Central Pontides, northern Turkey. Mineral Petrol 112: 25-44.
  • Daczko NR, Emami S, Allibone AH, Turnbull IM (2012). Petrogenesis and geochemical characterisation of ultramafic cumulate rocks from Hawes Head, Fiordland, New Zealand. NZ J Geol Geophys 55: 361-374.
  • DeBari SM, Coleman RG (1989). Examination of the deep levels of an island arc: Evidence from the Tonsina Ultramafic–Mafic Assemblage, Tonsina, Alaska. J Geophys Res Solid Earth 94: 4373-4391.
  • de Capitani C, Brown TH (1987). The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Ac 51: 2639-2652.
  • de Capitani CD, Petrakakis K (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95: 1006-1016.
  • Deer WA, Howie, RA, Zussman J (1992). An introduction to the rock-forming minerals. Harlow, UK: Longman Scientific and Technical.
  • Della-Pasqua FN, Kamenetsky VS, Gasparon M, Crawford AJ, Varne R (1995). Al-spinels in primitive arc volcanics. Mineral Petrol 53: 1-26.
  • Dick HJB, Bullen T (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86: 54–76.
  • Diener JFA, Powell R, White RW, Holland TJB (2007). A new thermodynamic model for clino- and orthoamphiboles in the system Na 2 O-CaO-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O-O. J Metamorph Geol 25: 631-656.
  • Evans BW, Frost BR (1975). Chrome-spinel in progressive metamorphism - a preliminary analysis. Geochim Cosmochim Ac 39: 959-972.
  • Feig ST, Koepke J, Snow JE (2006). Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152: 611-638.
  • Franz L, Wirth R (2000). Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contrib Mineral Petrol 140: 283-295.
  • Gargiulo MF, Bjerg EA, Mogessie A (2013). Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina. Geol Acta 11: 133-148.
  • Göncüoğlu MC, Erendil M, Tekeli O, Aksay A, Kuşçu İ, Ürgün BM (1987). Geology of the Armutlu Peninsula. Ankara, Turkey: Excursion Guidebook for the IGCP, project No. 5
  • Haggerty SE, Lindsley DH (editors) (1991). Oxide mineralogy of the upper mantle. Spinel mineral group: Reviews in Mineralogy, Oxide minerals: Petrologic and magnetic significance 25. Mineralogical Society of America.
  • Ho KS, Chen JC, Smith AD, Juang WS (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chemical Geol 167: 355-372.
  • Holland T, Powell R (2003). Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145: 492-501.
  • Holland TJB, Powell R (1998). An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16: 309-343.
  • Holm PM, Prægel NO (2006). Cumulates from primitive rift-related East Greenland Paleogene magmas: petrological and isotopic evidence from the ultramafic complexes at Kælvegletscher and near Kærven. Lithos 92: 251-275.
  • Jan MQ, Khan MA, Windley BF (1992). Exsolution in Al-Cr- Fe 3+ -rich spinels from the Chilas mafic-ultramafic complex, Pakistan. Am Mineral 77: 1074-1074.
  • Khanchuk AI, Vysotskiy SV (2016). Different-depth gabbro– ultrabasite associations in the Sikhote-Alin ophiolites (Russian Far East). Russ Geol Geophys+ 57: 141-154.
  • Konzett J, Miller C, Armstrong R, Thöni M (2005). Metamorphic evolution of iron-rich mafic cumulates from the Ötztal-Stubai crystalline complex, Eastern Alps, Austria. J Petrol 46: 717-747.
  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthopne FC, Kato A, Kisch HJ, Krivovichev VG et al. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International, Mineralogical Association, commission on new minerals and mineral names. Am Mineral 82: 1019-1037.
  • Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sc Lett 59: 139-154.
  • Loucks RR (1990). Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology 18: 346-349.
  • Melcher F, Meisel T, Puhl J, Koller F (2002). Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65: 69-112.
  • Montanini A, Zerbi M, Toscani L (1992). Petrology of deepseated spinel-rich gabbroic and pyroxenite xenoliths from Montiferro volcanic complex. Mineral Petrogr Acta 25: 77-98.
  • Morimoto N (1988). Nomenclature of pyroxenes. Mineral Petrol 39: 55-76.
  • Morishita T, Arai S, Gervilla F (2001). High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: significance of sapphirine-and corundum-bearing mineral assemblages. Lithos 57: 143-161.
  • Mukhopadhyay B (1991). Garnet breakdown in some deep seated garnetiferous xenoliths from the central Sierra Nevada: petrologic and tectonic implications. Lithos 27: 59-78.
  • Okay AI, Bozkurt E, Satır M, Yiğitbaş E, Crowley QG, Shang CK (2008). Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. Tectonophysics 461: 252-264.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey. Geol Soc London Spec Publ 156: 475-515.
  • Powell R, Holland TJB (2008). On thermobarometry. J Metamorph Geol 26: 155-179.
  • Robertson AHF, Ustaömer T (2004). Tectonic evolution of the Intra- Pontide suture zone in the Armutlu Peninsula, NW Turkey. Tectonophysics 381: 175-209.
  • Rodriguez G, González I, Restrepo JJ, Martens U, Cardona F, David J (2012). Ocurrence of granulites in the northern part of the Western Cordillera of Colombia. Boletín Geol 34: 37-53.
  • Rollinson H, Adetunji J (2015). The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: a review. Gondwana Res 27: 543-554.
  • Sun SS, McDonough WS (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Publ 42: 313-345.
  • Takagi D, Sato H, Nakagawa M (2005). Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol 149: 527-540.
  • Topuz G, Altherr R, Kalt A, Satır M, Werner O, Schwarz WH (2004). Aluminous granulites from the Pulur complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallisation. Lithos 72: 183-207.
  • Topuz G, Çelik ÖF, Şengör AMC, Altıntaş İE, Zack T, Rolland Y, Barth M (2013). Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahiye ophiolite, and relation to the Balkan ophiolites. Am J Sci 313: 1054-1087.
  • Urraza I, Delpino S, Grecco L (2015). Counterclockwise post- emplacement evolution of metatroctolites from Aluminé Igneous-Metamorphic Complex, Neuquén, Argentina. Andean Geol 42: 36-55.
  • Ushioda M, Takahashi E, Hamada M, Suzuki T (2014). Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt. Earth Planets Space 66: 127.
  • Uysal İ, Ersoy EY, Karslı O, Dilek Y, Sadıklar MB, Ottley CJ, Tiepolo M, Meisel T (2012). Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Lithos 132: 50-69.
  • Wass SY (1979). Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12: 115-132.
  • Wells PR (1977). Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62: 129-139.
  • White RW, Powell R, Clarke GL (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O- TiO 2 -Fe 2 O 3 . J Metamorph Geol 20: 41-55.
  • White RW, Powell R, Holland TJB. (2007). Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25: 511-527.
  • Whitney DL, Evans BW (2010). Abbreviations for names of rock- forming minerals. Am Mineral 95: 185-187.
  • Workman RK, Hart SR (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sc Lett 231: 53-72.
  • Wu T, Xia L, Ma C, Pirajno F, Sun Y, Zhan Q (2014). A mafic intrusion of “arc affinity” in a post-orogenic extensional setting: a case study from Ganluogou gabbro in the northern Yidun Arc Belt, eastern Tibetan Plateau. J Asian Earth Sci 94: 139-156.
  • Yang JJ (2006). Ca-rich garnet-clinopyroxene rocks at Hujialin in the Su-Lu terrane (Eastern China): deeply subducted arc cumulates? J Petrol 47: 965-990.
  • Yılmaz Y, Genç C, Yiğitbaş E, Bozcu M, Yılmaz K (1995). Geological evolution of the Late Mesozoic continental margin of northwestern Anatolia. Tectonophysics 243: 155-171.