Microfossil assemblages (diatoms, calcareous nannofossils, and silicoflagellates), paleoenvironment, and hydrocarbon source rock potential of the Oligocene Ruslar Formation at Karadere, Bulgaria

The Oligocene Ruslar Formation, an equivalent of the Maykop Suite, is a potential hydrocarbon source rock in the western Black Sea Basin. In contrast to the offshore areas, the depositional environment and hydrocarbon source rock potential of onshore Bulgaria sediments are largely unknown. Hence, a 14-m-thick section of the Ruslar Formation, exposed near Karadere (Black Cape) along the Black Sea coast, provides an excellent opportunity to study the upper part of the Ruslar Formation. Here, laminated diatomrich mudstones with frequent thin sandstone beds and a prominent concretion horizon are exposed. Furthermore, the fossil diatom assemblages provide a key component to understand the paleoenvironment. Overall, Paleogene diatoms are understudied in the Black Sea Basin and therefore only a genus-level study is undertaken here. The studied Ruslar Formation contain remarkably diverse and wellpreserved diatom assemblage with 23 different genera. The most frequent genera are Paralia, Distephanosira, and Stephanopyxis. Common genera include Coscinodiscus, Hemiaulus, Pseudopodosira, Rouxia, and Xanthiopyxis. Rare taxa include Actinoptychus, Asterolampra, Azpeitia, Delphineis, Distephanosira, Diploneis, Eunotogramma, Eurossia, Lyrella, Liradiscus, Plagiogramma, Radialiplicata, Rutilaria, Saeptifera, and Triceratium. The diatom assemblages together with calcareous nannoplankton, silicoflagellates, and the presence of rare foraminifera indicate a fully marine neritic environment without major salinity variations. The calcareous nannoplankton investigated can be assigned to biozone NP23 (Early Oligocene). The exposed fragment of the Ruslar Formation was deposited after the low salinity "Solenovian event", which represents the maximum isolation of the Paratethys present in the lower part of the NP23. Bulk geochemical parameters from 35 samples (avg. TOC: 1.80% wt.; avg. HI: 226 mg HC/g TOC) show that the exposed part of the Ruslar Formation contains type II-III kerogen and a fair to good hydrocarbon potential. The Ruslar Formation is immature (avg. Tmax: 424 °C), but may generate about 0.5 tons of hydrocarbons per square meter if mature. Biomarker proxies support the low maturity and are characterized by diatom-related biomarkers (24-norcholestane; C25HBI alkanes and thiophenes). Land-plant-derived biomarkers suggest a significant input of angiosperms. Based on biomarker ratios, the depositional environment was oxygen-depleted but probably not strictly anoxic. Reworking of biomass by chemoautotrophic bacteria is suggested by the presence of 28,30-bisnorhopane.

___

  • Aladzova-Hrisceva K (1991). Stratigraphy, subdivision and correlation of Paleogene deposits in northeastern Bulgaria. Geologica Balkanica 21: 12-28 (in Russian).
  • Báldi T (1984). The terminal Eocene and Early Oligocene events in Hungary and the separation of an anoxic, cold Paratethys. Eclogae Geologicae Helvetiae 77 (1): 1-27.
  • Bechtel A, Gratzer R, Sachsenhofer RF, Gusterhuber J, Lücke A et al. (2008). Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 262 (3-4): 166-175. doi: 10.1016/j.palaeo.2008.03.005
  • Bechtel A, Markic M, Sachsenhofer RF, Jelen B, Gratzer R et al (2004). Paleoenvironment of the Upper Oligocene Trbovlje coal seam (Slovenia). International Journal of Coal Geology 57 (1): 23-48. doi: 10.1016/j.coal.2003.08.005
  • Bechtel A, Sachsenhofer RF, Kolcon I, Gratzer R, Otto A et al. (2002). Organic geochemistry of the Lower Miocene Oberdorf lignite (Styrian Basin, Austria): Its relation to petrography, palynology and the palaeoenvironment. International Journal of Coal Geology 51 (1): 31-57. doi: 10.1016/s0166-5162(02)00079-4
  • Bechtel A, Widera M, Sachsenhofer RF, Gratzer R, Lücke A et al (2007). Biomarker and stable carbon isotope systematics of fossil wood from the second Lusatian lignite seam of the Lubstow deposit (Poland). Organic Geochemistry 38 (11): 1850-1864. doi: 10.1016/j.orggeochem.2007.06.018
  • Boesiger TM, de Kaenel E, Bergen JA, Browning E, Blair SA (2017). Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera and other placolith taxa in the circum North Atlantic Basin. Journal of Nannoplankton Research 37 (2-3): 145- 175.
  • Bown PR (2005). Palaeogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania (Tanzania Drilling Project 2003-4). Journal of Nannoplankton Research 27 (1): 21-95.
  • Cheshitev G, Kancev I (1989). Geological map of People`s Republic of Bulgaria. 1:500.000. Sofia, Bulgaria: Committee of Geology, Department of Geophysical Prospecting and Geological Mapping.
  • Dachev C, Stanev V, Bokov P (1988). Structure of the Bulgarian Black Sea area. Bullettino di Geofisica Teorica ed Applicata 30: 79-107.
  • Davies A, Kemp AES (2016). Late Cretaceous seasonal palaeoclimatology and diatom palaeoecology from laminated sediments. Cretaceous Research 65: 82-111. doi: 10.1016/j.cretres.2016.04.014
  • de Kaenel E, Villa G (1996). Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoeecology from the Iberian Abyssal Plain. Proceedings of the Ocean Drilling Program, Scientific Results 149: 79-145. doi: 10.2973/odp.proc.sr.149.208.1996
  • Demaison G, Huizinga BJ (1994). Genetic classification of petroleum systems using three factors: charge, migration and entrapment. AAPG Memoirs 60: 73-92.
  • Didyk BM, Simoneit BR, Brassell ST, Eglinton G (1978). Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272 (5650): 216-222. doi: 10.1038/272216a0
  • Eglinton G, Hamilton RJ (1967). Leaf epicuticular waxes. Science 156 (3780): 1322-1335. doi: 10.1126/science.156.3780.1322
  • Ficken KJ, Li B, Swain DL, Eglinton G (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31 (7-8): 745- 749. doi: 10.1016/s0146-6380(00)00081-4
  • Gebühr C, Wiltshire K, Aberle N, van Beusekom J, Gerdts G (2009). Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquatic Biology 7: 185-197. doi: 10.3354/ab00191
  • Georgiev G (2011). Geology and hydrocarbon systems in the Western Black Sea. Turkish Journal of Earth Sciences 21 (5): 723-754. doi: 10.3906/yer-1102-4
  • Georgiev G, Dabovski C (1997). Alpine structure and petroleum geology of Bulgaria. Geology and Mineral Resources 8/9, 3-7 (in Bulgarian). doi: 10.1306/3b05b0b0-172a-11d7- 8645000102c1865d
  • Goldman JC (1993). Potential role of large oceanic diatoms in new primary production. Deep Sea Research Part I: Oceanographic Research Papers 40 (1): 159-168. doi: 10.1016/0967- 0637(93)90059-c
  • Holba AG, Dzou LI, Masterson WD, Hughes WB, Huizinga BJ et al. (1998). Application of 24-norcholestanes for constraining source age of petroleum. Organic Geochemistry 29 (5-7): 1269-1283. doi: 10.1016/s0146-6380(98)00184-3
  • Kemp AES, Pearce RB, Grigorov I, Rance J, Lange CB et al. (2006). Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles 20 (4): 1-13. doi: 10.1029/2006gb002698
  • Kenig F, Huc AY, Purser BH, Oudin JL (1990). Sedimentation, distribution and diagenesis of organic matter in recent carbonate environment, Abu Dhabi, UAE. Organic Geochemistry 16 (4-6): 735-747. doi: 10.1016/0146-6380(90)90113-e
  • Lafargue E, Marquis F, Pillot D (1998). Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Français Du Pétrole 53 (4): 421-437. doi: 10.2516/ogst:1998036
  • Luo Q, Yu S, Liu Y, Zhang Y, Han H et al. (2012). Existence and implications of hop-17 (21)-enes in the lower cretaceous of the Saihantala Sag, Erlian Basin, China. Petroleum Science 9 (2): 154-160. doi: 10.1007/s12182-012-0195-8
  • Martini E (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Proceedings of the II Planktonic Conference. Rome, Italy: Tecnoscienza, pp. 739-785.
  • Marynowski L, Smolarek J, Bechtel A, Philippe M, Kurkiewicz S et al. (2013). Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Organic Geochemistry 59: 143-151. doi: 10.1016/j.orggeochem.2013.04.006
  • Mayer J, Rupprecht BJ, Sachsenhofer RF, Tari G, Bechtel A et al. (2018a). Source potential and depositional environment of Oligocene and Miocene rocks offshore Bulgaria. Geological Society of London Special Publications 464 (1): 307-328. doi: 10.1144/sp464.2
  • Mayer J, Sachsenhofer RF, Ungureanu C, Bechtel A, Gratzer R et al. (2018b). Petroleum charge and migration in the Black Sea: insights from oil and source rocks geochemistry. Journal of Petroleum Geology 41: 337-35. doi: 10.1111/jpg.12706
  • McQuoid M, Nordberg K (2003). The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science 56 (2): 339-354. doi: 10.1016/s0272-7714(02)00187-7
  • Moldowan JM, Fago FJ (1986). Structure and significance of a novel rearranged monoaromatic steroid hydrocarbon in petroleum. Geochimica et Cosmochimica Acta 50 (3): 343-351. doi: 10.1016/0016-7037(86)90188-2
  • Nichols PD, Volkman JK, Palmisano AC, Smith GA, White DC (1988). Occurrence of an isoprenoid C25 diunsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. Journal of Phycology 24 (1): 90-96. doi: 10.1111/ j.1529-8817.1988.tb04459.x
  • Nikishin AM, Okay AI, Tüysüz O, Demirer A, Amelin N et al. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology 59: 638-655. doi: 10.1016/j.marpetgeo.2014.08.017
  • Noble R, Alexander R, Kagi RI (1985). The occurrence of bisnorhopane, trisnorhopane and 25-norhopanes as free hydrocarbons in some Australian shales. Organic Geochemistry 8 (2): 171-176. doi: 10.1016/0146-6380(85)90035-x
  • Okada H, McIntyre A (1979). Seasonal distribution of the modern Coccolithophores in the western North Atlantic Ocean. Marine Biology 54: 319-328.
  • Ourisson G, Albrecht P, Rohmer M (1979). The Hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51 (4): 709-729. doi: 10.1351/pac197951040709
  • Pedersen JH, Karlsen DA, Backer-Owe K, Lie JE, Brunstad H (2006). Two geochemistry of two unusual oils from the Norway North Sea: implications for new source rock and play scenario. Petroleum Geoscience 12: 85-96.
  • Perch-Nielsen K (1985). Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (editors). Plankton Stratigraphy. Cambridge, UK: Cambridge University Press, pp. 427-554.
  • Popov N, Kojumdjieva E (1987). The Miocene in northeastern Bulgaria (lithostratigraphic subdivision and geologic evolution). Review of the Bulgarian Geological Society 38: 15-33 (in Bulgarian).
  • Popov SV, Voronina AA, Gontscharova IA (1993). Stratigraphy and bivalves of the Oligocene-Lower Miocene of the Eastern Paratethys. Moscow, Russia: Paleontological Institute of the Russian Academy of Sciences (in Russian).
  • Radke M, Willsch H, Welte DH (1980). Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry 52 (3): 406-411. doi: 10.1021/ac50053a009
  • Rögl F (1997). Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie 279-310.
  • Rusu A (1999). Rupelian mollusk fauna of Solenovian type found in Eastern Carpathians (Romania). Acta Palaeontologica Romaniae 2: 449-452.
  • Sachsenhofer RF, Popov SV, Bechtel A, Ćorić S, Francu J et al. (2018a). Oligocene and Lower Miocene source rocks in the Paratethys: Palaeogeographic and stratigraphic controls. In: Simmons M (editor). Petroleum Geology of the Black Sea. London, UK: Geological Society Special Publications, pp. 267-306. doi: 10.1144/sp464.1
  • Sachsenhofer RF, Popov SV, Ćorić S, Mayer J, Misch D et al. (2018b). Paratethyan petroleum source rocks: an overview. Journal of Petroleum Geology 41 (3): 219-245. doi: 10.1111/jpg.12702
  • Sachsenhofer RF, Stummer B, Georgiev G, Dellmour R, Bechtel A et al. (2009). Depositional environment and hydrocarbon source potential of the Oligocene Ruslar Formation (Kamchia Depression; western Black Sea). Marine and Petroleum Geology 26 (1): 57-84. doi: 10.1016/j.marpetgeo.2007.08.004
  • Schrader H, Gersonde R (1978). Diatoms and silicoflagellates. Utrecht Micropaleontological Bulletins 17: 129-176.
  • Schrader HJ (1973). Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments. Nova Hedwigia Supplement 45: 403-409.
  • Schultz L (1964). Quantitative Interpretation of Mineralogical Composition from X-ray and Chemical Data for the Pierre Shale. U.S. Geological Survey Professional Paper 391-C. Reston, VA, USA: USGS. doi: 10.3133/pp391c
  • Schulz HM, Bechtel AC, Rainer TH, Sachsenhofer RF, Struck UL (2004). Paleoceanography of the Western Central Paratethys during early Oligocene nannoplankton Zone NP23 in the Austrian Molasse Basin. Geologica Carpathica 55 (4): 311-323.
  • Simmons M, Bidgood M, Connel P, Coric S, Okay A et al. (2020). Biostratigraphy and palaeoenvironments of the Oligocene succession (Ihsaniye Formation) at Karaburun (NW Turkey). Turkish Journal of Earth Sciences 29: 28-63.
  • Simoneit BR, Grimalt JO, Wang TG, Cox RE, Hatcher PG et al. (1986). Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry 10 (4-6): 877-889. doi: 10.1016/s0146-6380(86)80025-0
  • Sinclair HD, Juranov SG, Georgiev G, Byrne P, Mountney NP (1997). The Balkan thrust wedge and foreland basin of Eastern Bulgaria: structural and stratigraphic development. In: Robinson AG (editor). Regional and Petroleum Geology of the Black Sea and Surrounding Region. Tulsa, OK, USA: American Association of Petroleum Geologists, pp. 91-114.
  • Suttill HL (2009). Sedimentological evolution of the Emine and Kamchia Basins, Eastern Bulgaria. MPhil thesis, University of Edinburgh, Edinburgh, UK.
  • Suto I (2004). Fossil marine diatom resting spore morpho-genus Xanthiopyxis Ehrenberg in the North Pacific and Norwegian Sea. Paleontological Research 8 (4): 283-310. doi: 10.2517/ prpsj.8.283
  • Tari GC, Simmons MD (2018). History of deepwater exploration in the Black Sea and an overview of deepwater petroleum play types. In: Simmons M (editor). Petroleum Geology of the Black Sea. London, UK: Geological Society Special Publications, pp. 439-475. doi: 10.1144/sp464.16
  • Ten Haven HL, De Leeuw JW, Schenk PA (1985). Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy). I: Hydrocarbon biomarkers for a hypersaline environment. Geochimica et Cosmochimica Acta 49 (10): 2181-2191. doi: 10.1016/0016-7037(85)90075-4
  • Tulan E, Sachsenhofer RF, Tari G, Flecker R, Fairbank V et al. (2020). Source rock potential and depositional environment of Lower Oligocene rocks in the Karaburun area, Turkey. Turkish Journal of Earth Sciences 29: 64-84.
  • Valchev B, Sachkov D, Juranov S (2018). 3D lithostratigraphic model of the Paleogene of the onshore part of the Moesian Platform (Northeast Bulgaria). Geologica Balcanica 47 (1): 23-36.
  • Volkman JK, Barnett SM, Dunstan GA, Jeffrey SW (1994). C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Organic Geochemistry 21 (3-4): 407- 13. doi: 10.1016/0146-6380(94)90202-x
  • Voronina AA, Popov SV (1984). Solenovian horizon from Eastern Paratethys. Bulletin of the Academy of Sciences of the USSR Geologic Series 9: 41-53 (in Russian).
  • Wade BS, Bown PR (2006). Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis. Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology 233: 271-286. doi: 10.1016/j.palaeo.2005.10.007
  • Watson JS, Jolley DW, Kelley SP (2009). High concentration of 28,30-bisnorhopane and 25,28,30-trisnorhopane at the PETM in the Faroe-Shetland basin. In: 24th International Meeting on Organic Geochemistry; 6–11 September 2009; Bremen, Germany.
  • Winter A, Jordan R, Roth P (1994). Biogeography of living Coccolithophores in ocean waters. In: Winter A, Siesser W (editors). Coccolithophores. Cambridge, UK: Cambridge University Press, pp. 13-37.
  • Witkowski J, Bohaty SM, Edgar KM, Harwood DM (2014). Rapid fluctuations in mid-latitude siliceous plankton production during the Middle Eocene Climatic Optimum (ODP Site 1051, western North Atlantic). Marine Micropaleontology 106: 110- 129. doi: 10.1016/j.marmicro.2014.01.001
  • Yon DA, Maxwell JR, Ryback G (1982). 2,6,10-Trimethyl-7-(3- methylbutyl)-dodecane, a novel sedimentary biological marker compound. Chemischer Informationsdienst 13 (43). doi: 10.1002/chin.198243163
  • Zolitschka B (1998). Paläoklimatische Bedeutung laminierter Sedimente. Holzmaar (Eifel, Deutschland), Lake C2 (NordwestTerritorien, Kanada) und Lago Grande di Monticchio (Basilicata, Italien). Berlin, Germany: Bornträger (in German).
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK