Geochemical, stable O, C, and B and radiogenic Sr, Nd, Pb isotopic data from the Eskişehir-Kızılcaören NW-Anatolia and the Malatya-Kuluncak E-central Anatolia F-REE-Th deposits, Turkey: implications for nature of carbonate-hosted mineralization

In Turkey, the largest fluorine F -rare earth element REE -thorium Th deposits are located within the Eskişehir-Kızılcaören north-western Anatolia and the Malatya-Kuluncak east-central Anatolia regions, and these are associated with Oligocene extensional alkaline volcanic and Late Cretecaous-Early Paleocene postcollisional intrusive rocks, respectively. In the Kızılcaören region, the basement units include the Triassic Karakaya Complex and the Late Cretaceous oceanic units Neotethyan suture that are cut and overlain by phonolite and carbonatite intrusions and lava flows. In the Kuluncak region, the plutonic rocks are mainly composed of syenite, quartz syenite, and rare monzonite, and these cut the late-Cretaceous Karapınar limestone, which hosts the F-REE-Th mineralization in contact zones. A carbonatite sample from the Kızılcaören region displays both a total rare earth element TREE concentration 4795 ppm and δ11B -6.83‰ isotope composition consistent with mantle-derived carbonatite; whereas it is characterized by heavier δ13C +1.43‰ and δ18O +20.23‰ isotope signatures compared to those for carbonatites worldwide. In contrast, the carbonates which host the F-REE-Th mineralization in the Kuluncak region are characterized by lower TREE concentrations 5.13 to 55.88 ppm , and heavier δ13C -0.14 to -0.75‰ , δ18O +27.36 to +30.61‰ , and δ11B +5.38 to +6.89‰ isotope ratios compared to mantle-derived carbonatites. Moreover, the combined initial 87Sr/86Sr 0.70584 to 0.70759 and 143Nd/144Nd 0.512238 to 0.512571 isotope ratios for samples investigated here are distinct and much more radiogenic compared to those for carbonatites worldwide, and therefore indicate significant crustal input and/or hydrothermal metasomatic-related alteration. Overall, stable and radiogenic isotope data suggest that the host carbonate rocks for the F-REE-Th mineralization in both the Kızılcaören and the Kuluncak regions consist of hydrothermally metasomatized carbonatite and limestone, respectively. The mineralization in the Kızılcaören region may potentially be related to carbonatite magmatism, whereas the mineralization in the Kuluncak region, which most likely formed through interactions between the plutonic rocks and surrounding limestone at contact metamorphism zone, involved hydrothermal/magmatic fluids associated with extensive postcollisional magmatism.

___

  • Altunkaynak S, Dilek Y, Genc CS, Sunal G, Gertisser R et al. (2012) Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research 21: 961-986.
  • Bell K, Simonetti A (1996). Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Journal of Petrology 37: 1321-1339.
  • Bell K, Simonetti A (2010). Source of parental melts to carbonatites– critical isotopic constraints. Mineralogy and Petrology 98: 77- 89.
  • Boztuğ D, Harlavan Y, Arehart GB, Satır M, Avci N (2007). K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriği-Sivas region, easterncentral Anatolia, Turkey. Lithos 97: 193-218.
  • Boztuğ D, Jonckheere RC, Heizler M, Ratschbacher L, Harlavan Y et al. (2009). Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics 473:223-233.
  • Chakhmouradian AR, Wall F (2012). Rare earth elements: minerals, mines, magnets (and more). Elements 8, 333-340.
  • Çimen O, Göncüoğlu MC, Simonetti A, Sayit K (2017). Whole rock geochemistry, zircon U-Pb and Hf isotope systematics of the Çangaldağ pluton: evidences for middle jurassic continental arc magmatism in the Central Pontides, Turkey. Lithos 288-289C: 35-54.
  • Çimen O, Kuebler C, Monaco B, Simonetti SS, Corcoran L et al. (2018). Boron, Carbon, Oxygen and Radiogenic Isotope Investigation of Carbonatite from the Miaoya complex, central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity. Lithos 322: 225-237.
  • Çimen O, Kuebler C, Simonetti SS, Corcoran L, Mitchell R et al. (2019). Combined Boron, Radiogenic (Nd, Pb, Sr), Stable (C, O) Isotopic and Geochemical Investigations of Carbonatites From the Blue River Region, British Columbia (Canada): Implications for Mantle Sources and Recycling of Crustal Carbon. Chemical Geology 529: 119240.
  • Chen W, Liu H-Y, Lu J, Jiang S-Y, Simonetti A et al. (2019). The formation of the ore-bearing dolomite from the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia: Insights from micron-scale geochemical data. Mineralium Deposita. doi: 10.1007/s00126-019-00886-4
  • De Hoog JCM, Savov IP (2018). Boron Isotopes as a Tracer of Subduction Zone Processes. In: Marschall H., Foster G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. doi: 10.1007/978-3-319-64666-4_9.
  • Delaloye M, Özgenç İ (1983). Petrography and age determinations of the alkaline volcanic rocks and carbonatite of Kιzılcaören district, Beylikahιr-Eskişehir, Turkey. Schweizerische mineralogische und petrographische Mitteilungen 63: 289-294.
  • Deines P (1989). Stable Isotope Variations in Carbonatites: Carbonatites: Genesis and Evolution. 13, Unwin Hyman.
  • Dilek Y, Altunkaynak S (2007). Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. International Geology Review 49 (5): 431-453.
  • Ersoy YE, Helvacı C, Uysal İ, Karaoğlu Ö, Palmer MR et al. (2012). Petrogenesis of the Miocene volcanism along the İzmir-Balıkesir Transfer Zone in western Anatolia, Turkey: Implications for origin and evolution of potassic volcanism in post-collisional areas. Journal of Volcanology and Geothermal Research 241-242: 21-38.
  • Ersoy EY, Uysal I, Gündoğan I (2018). Association of Alkaline Silicate and Carbonatite Rocks in Kızılcaören (Eskişehir) District: Implications for Liquid Immiscibility Processes in Genesis of Carbonatite Magmatism. 8. Geochemistry Symposium. Abstract Book. p.86.
  • Fu W, Luo P, Hu Z, Feng Y, Liu L et al. (2019). Enrichment of ionexchangeable rare earth elements by felsic volcanic rock weathering in South China: Genetic mechanism and formation preference. Ore Geology Reviews 114: 103120.
  • Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N et al. (2016). Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews 72: 838-856.
  • Göncüoğlu MC, Kozlu H, Dirik K (1997). Pre-alpine and alpine terranes in Turkey: explanatory notes to the terrane map of Turkey. Annales Géologiques des Pays Helléniques 37: 515- 536.
  • Gültekin AH, Örgün Y, Suner F (2003). Geology, mineralogy and fluid inclusion data of the Kizilcaoren fluorite- barite- REE deposit, Eskisehir, Turkey. Journal of Asian Earth Sciences 21: 365-376.
  • Harris NBW, Kelley S, Okay AI (1994). Post-collisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology 117: 241-252.
  • Hatzle T (1992). Die Genese Der Karbonatit-und AlkalivulkanitAssoziierten Fluorit-Baryt-Bastnasit-Vererzung Bei Kızılcaören (Turkei). Münchner Geol. Hefte. Technischen Universitat München: 271 pp (in German).
  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002). Geochemistry of oceanic carbonatites compared with continental carbonatites; mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology 142: 520-542.
  • Hulett SRW, Simonetti A, Rasbury ET, Hemming NG (2016). Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geoscience 9: 904- 908.
  • Ishikawa T, Nakamura E (1993). Boron isotope systematics of marine sediments. Earth and Planetary Science Letters 117: 567-580.
  • Jaireth S, Hoatson DM, Miezitis Y (2014). Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geology Reviews 62: 72-128.
  • Jones AP, Genge M, Carmody L (2013). Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry 75: 289-322.
  • Jordens A, Cheng YP, Waters KE (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering 41: 97-114.
  • Kaplan H (1977). Rare earth elements and thorium complex deposit of Kizilcaören village, Sivrihisar-Eskişehir, Turkey. Bulletin of Geological Engineering 2: 69-76.
  • Kasemann SA, Schmidt DN, Bijma J, Foster GV (2009). In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-Ph. Chemical Geology 260 (1-2): 138- 147.
  • Keller J, Hoefs J (1995). Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai. Carbonatite Volcanism, IAVCEI Proceedings in Volcanology 4: 113-123.
  • Kogarko LN, Sorokhtina NV, Zaitsev VA, Senin VG (2009). Rare Metal Mineralization of Calcite Carbonatites from the Cape Verde Archipelago. Geochemistry International 47: 531-549.
  • Kuşcu İ, Yılmazer E, Güleç NT, Bayır S, Demirela G et al. (2011). U Pb and 40Ar-39Ar geochronology and isotopic constraints on the genesis of copper gold bearing iron oxide deposits in the Hasançelebi district eastern Turkey. Economic Geology 106: 261-288.
  • Kynicky J, Smith MP, Xu C (2012). Diversity of rare earth deposits: the key example of China. Elements 8: 361-367.
  • Leo GW, Marvin RF, Mehnert HH (1974). Geological framework of Kuluncak–Sofular area, east-central Turkey, and K-Ar ages of igneous rocks. Geological Society of America Bulletin 85: 1785-1788.
  • Leo WG, Önder E, Kılıç M, Avcı M (1978). Geology and mineral resources of Kuluncak-Sofular area (Malatya K39-a1-K39-a2 quadrangles), Turkey. U.S. Geol Survey Bullettin pp. 1429.
  • Li XC, Zhou MF (2018). The Nature and Origin of Hydrothermal REE Mineralization in the Sin Quyen Deposit, Northwestern Vietnam. Economic Geology 113 (3): 645-673.
  • Marschall HR, Wanles VD, Shimizu N, Pogge Von Strandmann PAE, Elliott T et al. (2017). The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica et Cosmochimica Acta 207: 102-138.
  • McDonough WF, Sun SS (1995). The composition of the Earth. Chemical Geology 120: 223-253.
  • Millonig LJ, Gerdes A, Groat LA (2012). U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective. Lithos 152: 202-217.
  • Mitchell R, Chudy T, McFarlane CRM, Wu FY (2017). Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos 286-287: 75-91.
  • MTA Genel Müdürlüğü (2017). Dünyada ve Türkiye’de Nadir Toprak Elementleri, Fizibilite Etütleri Daire Başkanlığı (In Turkish).
  • Nikiforov AV, Öztürk H, Altuncu S, Lebedev VA (2014). Kizilcaören Ore-bearing Complex with Carbonatites (Northwestern Anatolia, Turkey): Formation Time and Mineralogy of Rocks. Geology of Ore Deposits 56: 35-60.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of Northern Turkey. In: Durand B, Jolivet L, Horthváth F, Séranne M (Eds.). The Mediterranean Basin: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publication 156: 475-515.
  • Okay AI, Göncüoğlu MC (2004). Karakaya Complex: a review of data and concepts. Turkish Journal of Earth Sciences 13: 77-95.
  • Özgenç İ (1993). Geology and REE-geochemistry of carbothermal bastnaesite–fluorite–barite deposit of Kızılcaören (Sivrihisar, Eskişehir), Geological Bulletin of Turkey 36: 1-11.
  • Özgenç İ, Kibici Y (1994). The geology and chemical-mineralogical properties of Britholite veins of Başören village (KuluncakMalatya). Geological Bulletin of Turkey 37: 77-85.
  • Özgenç İ, İlbeyli N (2009). Geochemical constraints on petrogenesis of Late Cretaceous alkaline magmatism in east-central Anatolia (Hasancelebi–Basören, Malatya), Turkey. Mineralogy and Petrology 95: 71-85.
  • Öztürk H, Altuncu S, Hanilçi N, Kasapçı C, Goodenough KM (2019a). Rare earth element-bearing fluorite deposits of Turkey: An overview. Ore Geology Reviews 105: 423-444.
  • Öztürk H, Hanilçi N, Altuncu S, Kasapçı C (2019b). Rare earth element (REE) resources of Turkey: An overview of their characteristics and origin. Bulletin of the Mineral Research and Exploration 159: 129-143.
  • Paris G, Bartolini A, Donnadieu Y, Beaumont V, Gaillardet J (2010). Investigating boron isotopes in a middle Jurassic micritic sequence: Primary vs. diagenetic signal. Chemical Geology 275 (3-4): 117-126.
  • Sarıfakıoğlu E, Özen H, Hall C (2009). Petrogenesis of extensionrelated alkaline volcanism in Karaburhan (Sivrihisar– Eskisehir), NW Anatolia, Turkey. Journal of Asian Earth Science 35: 502-515.
  • Sayit K, Göncüoğlu MC (2009). Geochemistry of mafic rocks of the Karakaya complex, Turkey: evidence for plume-involvement in the Palaeotethyan extensional regime during the Middle and Late Triassic. International Journal of Earth Sciences 98: 157- 185.
  • Simonetti A, Bell K (1993). Isotopic disequilibrium in clinopyroxenes from nephelinitic lavas, Napak volcano, eastern Uganda. Geology 21: 243-246.
  • Simonetti A, Bell K, Viladkar SG (1995). Isotopic data from the Amba Dongar Carbonatite Complex, west-central India: Evidence for an enriched mantle source. Chemical Geology 122: 185-198.
  • Spivack AJ, Edmond JM (1987). Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta 51: 1033-1043.
  • Stumpfl EF, Kırıkoğlu MS (1986). Fluorite–barite–rare earth deposit at Kızılcaören, Turkey, Mitteilungen der Österreichischen Geographischen Gesellschaft 78: 193-200.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181-241.
  • Tao R, Zhang L, Li S, Zhu J, Ke S (2018). Significant contrast in the Mg-C-O isotopes of carbonate between carbonated eclogite and marble from the S.W. Tianshan UHP subduction zone: Evidence for two sources of recycled carbon. Chemical Geology 483: 65-77.
  • Verplank PL (2017). The role of fluids in the formation of rare earth element deposits. Procedia Earth and Planetary Science 17: 758-761.
  • Walters AS, Goodenough KM, Hughes HSR, Roberts NMW, Gunn AG et al. (2013). Enrichment of rare earth elements during magmatic and post-magmatic processes: a case study from the loch loyal syenite complex, northern Scotland. Contributions to Mineralogy and Petrology 166: 1177-1202.
  • Williams-Jones AE, Migdisov AA, Samson IM (2012). Hydrothermal mobilisation of the rare earth elements - a tale of “ceria” and “yttria”. Elements 8: 355-360.
  • Woolley AR (1989). The Spatial and Temporal Distribution of Carbonatites: Carbonatites: Genesis and Evolution. Unwin Hyman 15-37.
  • Woolley AR, Kempe DRC (1989). Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell, K. (ed.) Carbonatites: Genesis and Evolution. Unwin Hyman, London, p. 1-13.
  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005). The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84: 206-216.
  • Xu C, Wang L, Song W, Wu M (2010). Carbonatites in China: A review for genesis and mineralization. Geoscience Frontiers 1: 105-114.
  • Yang, X.J., Lin, A., Li, X.L., Wu, Y., Zhou, W et al. (2013). China’s ion-adsorpsion rare earth resources, mining consequences and preservation. Environmental Development 8: 131-136.
  • Zartman RE, Doe BR (1981). Plumbotectonics—the model. Tectonophysics 75: 135-162.
  • Zhang SH, Zhao Y, Liu Y (2017). A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization. Precambrian Research 291: 202-219.
  • Zheng X, Lui Y (2019). Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China. Ore Geology Reviews 107: 218-238.
  • Zhou JX, Luo K, Li B, Huang ZL, Yan ZF (2016). Geological and isotopic constraints on the origin of the Anle carbonate-hosted Zn–Pb deposit in northwestern Yunnan Province, SW China. Ore Geology Reviews 74: 88-100.
  • Zindler A, Hart SR (1986). Chemical dynamics. Annual Review of Earth And Planetary Sciences 14: 493-571.