Water management improvement in PEM fuel cells via addition of PDMS or APTES polymers to the catalyst layer

Water management is one of the obstacles in the development and commercialization of proton exchange membrane fuel cells (PEW:Cs). Sufficient humidification of the membrane directly affects the PEM fuel cell performance. Therefore, 2 different hydrophobic polymers, polydimethylsiloxane (PDMS) and (3-Aminopropyl) triethoxysilane (APTES), were tested at different percentages (5, 10, and 20 wt.%) in the catalyst layer. The solution was loaded onto the surface of a 25 BC gas diffusion layer (GDIL) via the spraying method. The performance of the obtained fuel cells was compared with the performance of the commercial catalyst. Characterizations of each surface, including different amounts of PDMS and APTES, were performed via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses. Molecular bond characterization was examined via Fourier transform infrared spectroscopy (FTIR) analysis and surface hydrophobicity was measured via contact angle measurements. The performance of the fuel cells was evaluated at the PEM fuel cell test station and the 2 hydrophobic polymers were compared. Surfaces containing APTES were found to be snore hydrophobic. Fuel cells with PDMS performed better when compared to those with APTES. Fuel cells with 5wt.% APTES with a current density of 321.31 mA/cm(2) and power density of 0.191 W/cm(2), and 10wt.% PDMS with a current density of 344.52 mA/cm(2) and power density of 0.205 W/cm(2) were the best performing fuel cells at 0.6V.

___

  • Aneja KS, 2015, NANOSCALE, V7, P17879, DOI 10.1039/c5nr04702a
  • Arslan G, 2006, TURK J CHEM, V30, P203 .
  • Avcioglu GS, 2016, INT J HYDROGEN ENERG, V41, P10010, DOI 10.1016/j.ijhydene.2016.03.048
  • Avcioglu GS, 2015, INT J HYDROGEN ENERG, V40, P7720, DOI 10.1016/j.ijhydene.2015.02.004
  • Bezerra CWB, 2008, ELECTROCHIM ACTA, V53, P4937, DOI 10.1016/j.electacta.2008.02.012
  • Cabasso I, 1998, Google Patents, Patent No. [5,783,325, 5783325]
  • Cao TF, 2013, APPL ENERG, V112, P1115, DOI 10.1016/j.apenergy.2013.02.031
  • Cheah MJ, 2013, LANGMUIR, V29, P15122, DOI 10.1021/la403057k
  • Das E, 2016, INT J HYDROGEN ENERG, V41, P13171, DOI 10.1016/j.ijhydene.2016.05.167
  • Dicks A.L., 2018, FUEL CELL SYSTEMS EX .
  • Friedmann R, 2010, J ELECTROCHEM SOC, V157, pB260, DOI 10.1149/1.3264628
  • Friedmann R, 2008, ECS TRANSACTIONS, V16, P2021, DOI 10.1149/1.2982042
  • Jankauskaite V, 2019, COATINGS, V9, DOI 10.3390/coatings9010036
  • Jiao K, 2011, PROG ENERG COMBUST, V37, P221, DOI 10.1016/j.pecs.2010.06.002
  • Kumar A, 2020, COORDIN CHEM REV, V402, DOI 10.1016/j.ccr.2019.213047
  • Li KQ, 2014, COLLOID SURFACE A, V445, P111, DOI 10.1016/j.colsurfa.2014.01.024
  • Lim C, 2004, ELECTROCHIM ACTA, V49, P4149, DOI 10.1016/j.electacta.2004.04.009
  • Lin GY, 2005, J ELECTROCHEM SOC, V152, pA1942, DOI 10.1149/1.2006487
  • Martin AJ, 2009, J POWER SOURCES, V192, P14, DOI 10.1016/j.jpowsour.2008.10.104
  • Martin S, 2010, J POWER SOURCES, V195, P2443, DOI 10.1016/j.jpowsour.2009.11.092
  • Mehta V, 2003, J POWER SOURCES, V114, P32, DOI 10.1016/S0378-7753(02)00542-6
  • Moreira J, 2003, INT J HYDROGEN ENERG, V28, P625, DOI 10.1016/S0360-3199(02)00143-X
  • Nguyen TV, 2006, ECS T, V1, P501 .
  • Ozden A, 2019, PROG ENERG COMBUST, V74, P50, DOI 10.1016/j.pecs.2019.05.002
  • Ozturk A, 2017, INT J HYDROGEN ENERG, V42, P6250, DOI 10.1016/j.ijhydene.2016.11.041
  • Park GG, 2004, J POWER SOURCES, V131, P182, DOI 10.1016/j.jpowsour.2003.12.037
  • Park S, 2006, J POWER SOURCES, V163, P357, DOI 10.1016/j.jpowsour.2006.09.020
  • Park SB, 2012, INT J PRECIS ENG MAN, V13, P1145, DOI 10.1007/s12541-012-0152-x
  • Paul DR, 2010, PROG POLYM SCI, V35, P893, DOI 10.1016/j.progpolymsci.2010.03.004
  • Radev I, 2012, INT J HYDROGEN ENERG, V37, P11862, DOI 10.1016/j.ijhydene.2012.05.027
  • Rahimian P, 2018, EXP THERM FLUID SCI, V97, P237, DOI 10.1016/j.expthermflusci.2018.04.021
  • Rogers JA, 2005, MATER TODAY, V8, P50, DOI 10.1016/S1369-7021(05)00702-9
  • Salahuddin M, 2018, INT J HYDROGEN ENERG, V43, P11530, DOI 10.1016/j.ijhydene.2017.07.229
  • Shahgaldi S, 2019, ELECTROCHIM ACTA, V299, P809, DOI 10.1016/j.electacta.2019.01.064
  • Shang XJ, 2017, APPL SURF SCI, V394, P169, DOI 10.1016/j.apsusc.2016.10.102
  • Stafie N, 2005, SEP PURIF TECHNOL, V45, P220, DOI 10.1016/j.seppur.2005.04.001
  • Tiliakos A, 2020, APPL SURF SCI, V504, DOI 10.1016/j.apsusc.2019.144096
  • Ungan H, 2019, INT J ENERG RES, V43, P5946, DOI 10.1002/er.4704
  • Velayutham G, 2007, FUEL CELLS, V7, P314, DOI 10.1002/fuce.200600032
  • Wang L, 2013, SCI REP-UK, V3, DOI 10.1038/srep03568
  • Wee JH, 2007, J POWER SOURCES, V165, P667, DOI 10.1016/j.jpowsour.2006.12.051
  • Zeng XX, 2011, J PHYS CHEM B, V115, P450, DOI 10.1021/jp109259b
  • Zhan ZG, 2012, INT J HYDROGEN ENERG, V37, P1094, DOI 10.1016/j.ijhydene.2011.02.081
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK