Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminium-activated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline

Zero-valent iron (ZVI)- and zero-valent aluminium (ZVA)-activated persulfate (PS) oxidation procedure was applied to remove the industrial pollutants 3,5-dichlorophenol (3,5-DCP; 12.27 mu M) and 2,4-dichloroaniline (2,4-DCA; 12.34 mu M) from aqueous solutions. The effects of PS concentration and pH were investigated to optimize heterogeneous treatment systems. Negligible removals were obtained for both pollutants by individual applications of nanoparticles (1 g/L) and PS (1.00 mM). PS activation with ZVI resulted in 59% (1.00 mM PS; 1 g/L ZVI; pH 5.0; 120 min) and 100% (0.75 mM PS; 1 g/L ZVI; pH 5.0; 80 min) 3,5-DCP and 2,4-DCA removals, respectively. The ZVA/PS treatment system gave rise to only 31% 3,5-DCP (1.00 mM PS; 1 g/L ZVA; pH 3.0; 120 min) and 47% 2,4DCA (0.25 mM PS; 1 g/L ZVA; pH 3.0; 120 min) removals. The pH decreases from 5.0 to 3.0 and from 3.0 to 1.5 enhanced contaminant removals for ZVI/PS and ZVA/PS treatments, respectively. Pollutant removal rates were in correlation with the consumption rates of the oxidants. Metal ion (Al, Fe) release increased in the presence of PS and with decreasing pH.

___

  • Adityosulindro S, 2017, ULTRASON SONOCHEM, V39, P889, DOI 10.1016/j.ultsonch.2017.06.008
  • Arabatzis IM, 2002, J PHOTOCH PHOTOBIO A, V149, P237, DOI 10.1016/S1010-6030(01)00645-1
  • Arslan-Alaton I, 2017, WATER SCI TECHNOL, V76, P2455, DOI 10.2166/wst.2017.411
  • Arslan-Alaton I, 2017, CHEM ENG J, V318, P64, DOI 10.1016/j.cej.2016.05.021
  • Arslan-Alaton I, 2017, CATAL TODAY, V280, P199, DOI 10.1016/j.cattod.2016.04.039
  • Arslan-Alaton I, 2018, CATAL TODAY, V313, P134, DOI 10.1016/j.cattod.2017.11.002
  • Baciocchi R, 2005, J HAZARD MATER, V118, P239, DOI 10.1016/j.jhazmat.2004.11.010
  • Bokare AD, J HAZARDOUS .
  • Bokare AD, 2009, ENVIRON SCI TECHNOL, V43, P7130, DOI 10.1021/es9013823
  • Brack A, 2003, BBA-GEN SUBJECTS, V1621, P253, DOI 10.1016/S0304-4165(03)00076-X
  • BUXTON GV, 1988, J PHYS CHEM REF DATA, V17, P513, DOI 10.1063/1.555805
  • Cao MH, 2019, CHEMOSPHERE, V229, P200, DOI 10.1016/j.chemosphere.2019.04.135
  • Dogan M, 2016, J ADV OXID TECHNOL, V19, P266
  • Farre MJ, 2006, WATER RES, V40, P2533, DOI 10.1016/j.watres.2006.04.034
  • GAMES LM, 1977, ANAL CHEM, V49, P1433, DOI 10.1021/ac50017a035
  • Garba ZN, 2019, J ENVIRON MANAGE, V241, P59, DOI 10.1016/j.jenvman.2019.04.004
  • Ge TT, 2017, AQUAT TOXICOL, V184, P78, DOI 10.1016/j.aquatox.2017.01.005
  • Girit B, 2015, WATER SCI TECHNOL, V71, P1859, DOI 10.2166/wst.2015.175
  • Hayat W, 2019, CHEM ENG J, V370, P1169, DOI 10.1016/j.cej.2019.03.261
  • Hu CY, 2020, CHEM ENG J, V379, DOI 10.1016/j.cej.2019.122403
  • HUIE RE, 1989, INT J CHEM KINET, V21, P611, DOI 10.1002/kin.550210802
  • Hwang HM, 1998, B ENVIRON CONTAM TOX, V60, P81, DOI 10.1007/s001289900594
  • Jain B, 2018, ENVIRON CHEM LETT, V16, P947, DOI 10.1007/s10311-018-0738-3
  • Karci A, 2014, CHEMOSPHERE, V99, P1, DOI 10.1016/j.chemosphere.2013.10.034
  • Karci A, 2012, J PHOTOCH PHOTOBIO A, V230, P65, DOI 10.1016/j.jphotochem.2012.01.003
  • Kilemade M, 2003, AQUAT TOXICOL, V63, P207, DOI 10.1016/S0166-445X(02)00180-7
  • Kimura Z, 2016, J BIOSCI BIOENG, V122, P467, DOI 10.1016/j.jbiosc.2016.03.021
  • Li HX, 2014, CHEM ENG J, V250, P137, DOI 10.1016/j.cej.2014.03.092
  • Li RC, 2015, CHEM ENG J, V264, P587, DOI 10.1016/j.cej.2014.11.128
  • Matthes W, 2000, CLAY CLAY MINER, V48, P593, DOI 10.1346/CCMN.2000.0480601
  • Miniere M, 2018, CAN J CHEM ENG, V96, P2450, DOI 10.1002/cjce.23195
  • National Toxicology Program, 1992, NAT TOX PROGR CHEM R
  • NETA P, 1988, J PHYS CHEM REF DATA, V17, P1027, DOI 10.1063/1.555808
  • Pambrun V, 2008, ENVIRON SCI POLLUT R, V15, P592, DOI 10.1007/s11356-008-0029-9
  • Pascal-Lorber S, 2003, J AGR FOOD CHEM, V51, P4712, DOI 10.1021/jf034230j
  • Pikaev AK, 1967, B ACAD SCI USSR CH, V16, P181, DOI [10.1007/bf00907128, DOI 10.1007/BF00907128]
  • Pulicharla R, 2018, CHEMOSPHERE, V207, P543, DOI 10.1016/j.chemosphere.2018.05.134
  • Qi CD, 2017, CHEM ENG J, V315, P201, DOI 10.1016/j.cej.2017.01.012
  • Qiu Y. Q., 2004, Journal of Environmental Engineering, V130, P408, DOI 10.1061/(ASCE)0733-9372(2004)130:4(408)
  • Ren TF, 2019, CHEM ENG J, V374, P100, DOI 10.1016/j.cej.2019.05.172
  • Sinkkonen S, 1997, CHEMOSPHERE, V35, P1175, DOI 10.1016/S0045-6535(97)00189-6
  • Tabak A, 2007, J COLLOID INTERF SCI, V313, P5, DOI 10.1016/j.jcis.2007.02.086
  • Temiz K, 2016, ENVIRON TECHNOL, V37, P1757, DOI 10.1080/09593330.2015.1131751
  • Tian N, 2019, CHEM ENG J, V355, P448, DOI 10.1016/j.cej.2018.08.183
  • TS EN ISO 17294-2, 172942 TS EN ISO .
  • U.S. Environmental Protection Agency (EPA), 1980, 440580032 US EPA
  • VANGESTEL CAM, 1989, ECOTOX ENVIRON SAFE, V18, P305, DOI 10.1016/0147-6513(89)90024-9
  • VILLEGAS E, 1963, ANAL CHIM ACTA, V29, P145, DOI 10.1016/S0003-2670(00)88595-5
  • Wang HJ, 2018, WATER RES, V130, P127, DOI 10.1016/j.watres.2017.11.054
  • Wei XY, 2016, CHEM ENG J, V285, P660, DOI 10.1016/j.cej.2015.08.120
  • Xie L, 2018, AQUAT TOXICOL, V197, P98, DOI 10.1016/j.aquatox.2018.02.005
  • Yang SY, 2017, WATER RES, V123, P704, DOI 10.1016/j.watres.2017.07.013
  • Yang ZH, 2017, SCI TOTAL ENVIRON, V590, P751, DOI 10.1016/j.scitotenv.2017.03.039
  • Yangin-Gomec C, 2018, J ENVIRON CHEM ENG, V6, P7318, DOI 10.1016/j.jece.2018.09.028
  • Yu X-Y, FREE RADICAL REACTIO .
  • Zhang H, 2005, J HAZARD MATER, V125, P166, DOI 10.1016/j.jhazmat.2005.05.025
  • Zhang H, 2018, CHEMOSPHERE, V204, P351, DOI 10.1016/j.chemosphere.2018.04.052
  • Zhou CZ, 2019, SCI TOTAL ENVIRON, V688, P75, DOI 10.1016/j.scitotenv.2019.06.197
  • Zhou DN, 2018, CHEM ENG J, V346, P726, DOI 10.1016/j.cej.2018.04.016