Synthesis, cytotoxic assessment, and molecular docking studies of 2,6-diaryl-substituted pyridine and 3,4- dihydropyrimidine-2(1H)-one scaffolds

Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe2 O4 @SiO2 -SO3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC50 of 0.17 ?g/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC50 of 4.90 and 4.97 μg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (-9.52 kcal/mol) and lowest Ki (0.105 μ4ct with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.

___

  • 1. Abnous K, Barati B, Mehri S, Farimani MRM, Alibolandi M et al. Synthesis and molecular modeling of six novel monastrol analogues: evaluation of cytotoxicity and kinesin inhibitory activity against HeLa cell line. DARU Journal of Pharmaceutical Sciences 2013; 21 (1): 70-78. doi: 10.1186/2008-2231-21-70
  • 2. Ogbomo H, Timm-McCann M, Barnes T, Xiang RF, Jamil K et al. Granule-dependent NK cell killing of cryptococcus requires kinesin to reposition the cytolytic machinery for directed cytotoxicity. Cell Reports 2018; 24 (11): 3017-3032. doi: 10.1016/j.celrep.2018.08.027
  • 3. Makala H, Ulaganathan V. Identification of novel scaffolds to inhibit human mitotic kinesin Eg5 targeting the second allosteric binding site using in silico methods. Journal of Receptors and Signal Transduction 2018; 38 (1): 12-19. doi: 10.1080/10799893.2017.1387922
  • 4. Canto RFS, Bernardi A, Battastini AMO, Russowsky D, Eifler-Lima VL et al. Synthesis of dihydropyrimidin-2- one/thione library and cytotoxic activity against the human U138 MG and Rat C6 glioma cell lines. Journal of the Brazilian Chemical Society 2011; 22 (7): 1379-1388. doi: 10.1590/S0103-50532011000700025
  • 5. Russowsky D, Canto RFS, Sanches SA, Doca MG, Fatima A et al. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorganic Chemistry 2006; 34 (4): 173-182. doi: 10.1016/j.bioorg.2006.04.003
  • 6. Venkateshwarlu K, Rao GC, Reddy V, Reddy YN. Synthesis and in vitro and in vivo antitumor/anticancer activity of novel O-Mannich bases of 4, 6-diaryl-3, 4-dihydropyrimidine-2 (1H)-ones. Journal of the Iranian Chemical Society 2014; 11 (6): 1619-1627. doi: 10.1007/s13738-014-0438-2
  • 7. Dravyakar B, Kawade D, Khedekar P, Bhusari K. Synthesis and pharmacological studies of some 6-aminopyrimidin4-ones. Indian Journal of Heterocyclic Chemistry 2007; 16 (3): 301-302.
  • 8. Chikhale R, Bhole R, Khedekar P, Bhusari K. Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates. European Journal of Medicinal Chemistry 2009; 44 (9): 3645-3653. doi: 10.1016/j.ejmech.2009.02.021
  • 9. Zabihollahi R, Vahabpour R, Hartoonian C, Sedaghati B, Sadat S et al. Evaluation of the in vitro antiretroviral potential of some Biginelli-type pyrimidines. Acta Virologica 2012; 56 (1): 8-11. doi: 10.1016/j.ejmech.2009.02.021
  • 10. Gonzalez-Hernandez E, Aparicio R, Garayoa M, Montero MJ, Sevilla MA et al. Dihydropyrimidine-2-thiones as Eg5 inhibitors and L-type calcium channel blockers: potential antitumor dual agents. Medicinal Chemistry Communication 2019; 10 (9): 1589-1598. doi: 10.1039/C9MD00108E
  • 11. Zhang F, Zhao L, Sun Y, Ding L, Gu Y et al. Synthesis and antitumor activity of 2-amino-3-cyano-6-(1H-indol-3- yl)-4-phenylpyridine derivatives in vitro. European Journal of Medicinal Chemistry 2011; 46 (7): 3149-3157. doi: 10.1016/j.ejmech.2011.03.055
  • 12. Deng J, Sanchez T, Al-Mawsawi LQ, Dayam R, Yunes A et al. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorganic Medicinal Chemistry 2007; 15 (14): 4985-5002. doi: 10.1016/j.bmc.2007.04.041
  • 13. Khidre RE, Abu-Hashem A, El-Shazly M. Synthesis and anti-microbial activity of some 1- substituted amino4,6-dimethyl-2-oxo-pyridine-3-carbonitrile derivatives. European Journal of Medicinal Chemistry 2011; 46 (10): 5057-5064. doi: 10.1016/j.ejmech.2011.08.018
  • 14. Murata T, Shimada M, Sakakibara S, Yoshino T, Kadono H et al. Discovery of novel and selective IKK-β serinethreonine protein kinase inhibitors. Part 1. Bioorganic & Medicinal Chemistry Letters 2003; 13 (5): 913-918. doi: 10.1016/S0960-894X(02)01046-6
  • 15. Bekhit A, Baraka A. Novel milrinone analogs of pyridine-3-carbonitrile derivatives as promising cardiotonic agents. European Journal of Medicinal Chemistry 2005; 40 (12): 1405-1413. doi: 10.1016/j.ejmech.2005.06.005
  • 16. Mantri M, Graaf O, Veldhoven J, Goblyos A, Frijtag J et al. 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. Journal of Medicinal Chemistry 2008; 51 (15): 4449-4455. doi: 10.1021/jm701594y
  • 17. Matsuo H, Wakasugi M, Takanaga H, Ohtani H, Naito M et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to p-glycoprotein. Journal of Controlled Release 2001; 77 (1-2): 77-86. doi: 10.1016/s0168-3659(01)00460-6
  • 18. Fahad-Ullah M. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pacific Journal of Cancer Prevention 2008; 9 (1): 1-6.
  • 19. Liu Z, Ma R, Cao D, Liu C. New efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalyzed by benzotriazoliumbased ionic liquids under solvent-free conditions. Molecules 2016; 21 (4): 462-470. doi: 10.3390/molecules21040462
  • 20. Khademinia S, Behzad M, Alemi A, Dolatyari M, Sajjadi SM. Catalytic performance of bismuth pyromanganate nanocatalyst for Biginelli reactions. RSC Advances 2015; 5 (87): 71109-71114. doi: 10.1039/C5RA11432B
  • 21. Kakaei S, Kalal H, Hoveidi H. Ultrasound assisted one-pot synthesis of dihydropyrimidinones using holmium chloride as catalyst. Journal of Sciences of the Islamic Republic of Iran 2015; 26 (2): 117-123.
  • 22. Zhang Y, Wang B, Zhang X, Huang J, Liu C. An efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules 2015; 20 (3): 3811-3820. doi: 10.3390/molecules20033811
  • 23. Konda SHG, Khedkar VT, Dawane BS. Synthesis of some new 2-amino-3-cyano-4-aryl-6-(1-naphthylamino)- pyridines as antibacterial agent. Journal of Chemical and Pharmaceutical Research 2010; 2 (1): 187-191.
  • 24. Mungra D, Patel P, Patel R. An efficient one-pot synthesis and in vitro antimicrobial activity of new pyridine derivatives bearing the tetrazoloquinoline nucleus. Arkivoc 2009; 2009 (14): 64-74. doi: 10.3998/ark.5550190.0010.e06
  • 25. Vyas DH, Tala SD, Akbari JD, Dhaduk MF, Joshi KA et al. Synthesis and antimicrobial activity of some new cyanopyridine and cyanopyrans towards Mycobacterium tuberculosis and other microorganisms. Indian Journal of Chemistry 2009; 48 (6): 833-839.
  • 26. Gholap AR, Toti KS, Shirazi F, Kumari R, Bhat M et al. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Bioorganic Medicinal Chemistry 2007; 15 (21): 6705-6715. doi: 10.1016/j.bmc.2007.08.009
  • 27. Ramazani A, Mahyari A. Three-component reaction of isocyanides and 2-formylbenzoic acid with dibenzylamine catalyzed by silica nanoparticles under solvent-free conditions. Helvetica Chimica Acta 2010; 93 (11): 2203-2209. doi: 10.1002/hlca.201000124
  • 28. Ramazani A, Mahyari A, Lashgari H, Katarzyna S, Lis T. Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of 2-hydroxyacetamide derivatives from isocyanides and electron-poor aromatic aldehydes. Helvetica Chimica Acta 2011; 94 (4): 611-622. doi: 10.1002/hlca.201000280
  • 29. Ramazani A, Rezaei A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-Wittig sequence. Organic Letters 2010; 12 (12): 2852-2855. doi: 10.1021/ol100931q
  • 30. Ramazani A, Zeinali FN, Rezaei A, Rouhani M, Ahankar H et al. Synthesis of N-acylurea derivatives from carboxylic acids and N,N′-dialkylcarbodiimides in water. Journal of Chemical Sciences 2015; 127 (12): 2269-2282. doi: 10.1007/s12039-015-0988-6
  • 31. Lin Y, Chen H, Lin K, Chen B, Chiou C. Application of magnetic particles modified with amino groups to adsorb; copper ions in aqueous solution. Journal of Environmental Sciences 2011; 23 (1): 44-50. doi: 10.1016/S1001- 0742(10)60371-313
  • 32. Mahmoodi M, Khorramfar S, Najafi F. Amine-functionalized silica nanoparticle: Preparation, characterization and anionic dye removal ability. Desalination 2011; 279 (3): 61-68. doi: 10.1016/j.desal.2011.05.059
  • 33. Kassaee M, Masrouri H, Movahedi F. Sulfamic acid-functionalized magnetic Fe 3 O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Applied Catalysis A: General 2011; 395 (2): 28-33. doi: 10.1016/j.apcata.2011.01.018
  • 34. Nemati F, Heravi M, Rad RS. Nano-Fe 3 O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient Knoevenagel condensation and Michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones. Chinese Journal of Catalysis 2012; 33 (12): 1825-1831. doi: 10.1016/S1872- 2067(11)60455-5
  • 35. Sadri F, Ramazani A, Massoudi A, Khoobi M, Azizkhani V et al. Magnetic CoFe 2 O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. Bulletin of the Korean Chemical Society 2014; 35 (7): 2029-2032. doi: 10.5012/bkcs.2014.35.7.2029
  • 36. Hosseinzadeh Z, Ramazani A, Ahankar H, Slepokura K, Lis T. Synthesis of 2-amino-4,6-diarylnicotinonitrile in the presence of CoFe 2 O4 @SiO2 -SO3 H as a reusable solid acid nanocatalyst under microwave irradiation in solventfree conditions. Silicon 2018; 2018: 1-8. doi: 10.1007/s12633-018-0034-7
  • 37. Javidi J, Esmaeilpour M, Dodeji FN. Immobilization of phosphomolybdic acid nanoparticles on imidazole functionalized Fe 3 O4 @SiO2 : a novel and reusable nanocatalyst for one-pot synthesis of Biginelli-type 3,4-dihydropyrimidine-2-(1H)-ones/thiones under solvent-free conditions. RSC Advances 2015; 5 (1): 308-315. doi: 10.1039/C4RA09929J
  • 38. Mohammadi Z, Ghorbi S, Gholamzadeh P, Badiei A. The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3 H nanocatalyst. Research on Chemical Intermediates 2018; 44 (1): 277-288. doi: 10.1007/s11164-017-3103-4
  • 39. Mohammadi Z, Seiedakbari L, Gholamzadeh P, Badiei A. Preparation and characterization of ionic liquid functionalized SBA-15 and its application in the synthesis of 2, 3-dihydroquinazolinones. Iranian Journal of Catalysis 2017; 7 (2): 137-145.
  • 40. Prakash G, Lau H, Panja C, Bychinskaya I, Ganesh SK et al. Synthesis of dihydropyrimidinones/thiopyrimidinones: Nafion-Ga, an efficient ”green” Lewis acid catalyst for the Biginelli reaction. Catalysis Letters 2014; 144 (12): 2012- 2020. doi: 10.1007/s10562-014-1364-8
  • 41. Liu Z, Ma R, Cao D, Liu C. New efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by benzotriazoliumbased ionic liquids under solvent-free conditions. Molecules 2016; 21 (4): 462-472. doi: 10.3390/molecules21040462
  • 42. Khademinia S, Behzad M, Alemi A, Dolatyari M, Sajjadi SM. Catalytic performance of bismuth pyromanganate nanocatalyst for Biginelli reactions. RSC Advances 2015; 5 (87): 71109-71114. doi: 10.1039/C5RA11432B
  • 43. Nayak SK, Venugopala KN, Chopra D, Row G. Insights into conformational and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates. Crystal Structure Data 2011; 13 (2): 591-605. doi: 10.1039/C0CE00045K
  • 44. Shah H, Shah V, Desai N. A novel strategy for the synthesis of 2-amino-4,6-diarylnicotinonitrile. Arkivoc 2009; 2009 (2): 76-87. doi: 10.3998/ark.5550190.0010.209
  • 45. Zolfigol M, Kiafar M, Yarie M, Taherpour A, Saeidi-Rad M. Experimental and theoretical studies of the nanostructured {Fe 3 O4 @SiO2 @(CH2)3 Im}C(CN) 3 catalyst for 2-amino-3-cyanopyridine preparation via an anomeric based oxidation. RSC Advances 2016; 6(55): 50100-50111. doi: 10.1039/C6RA12299J
  • 46. Guido B, Ramos L, Nolasco D, Nobrega C, Andrade B et al. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin2(1H)-one derivatives on various breast cancer cell features. BioMedical Central Cancer 2015; 1 (5): 283-294. doi: 10.1186/s12885-015-1274-1
  • 47. Ramazani A, Hamidnezhad R, Foroumadi A, Mirzaei S, Maddahi S et al. In vitro antiplasmodial activity and cytotoxic effect of (Z)-2-benzylidene-4,6-dimethoxybenzofuran-3(2H)-one derivatives. Iranian Journal of Parasitology 2016; (3): 371-376.
  • 48. Barsanti P, Wang W, Ni Z, Duhl D, Brammeier N et al. The discovery of tetrahydro-beta-carbolines as inhibitors of the kinesin Eg5. Bioorganic Medicinal Chemistry Letters 2010; 20 (1): 157-160. doi: 10.1016/j.bmcl.2009.11.012
  • 49. Kaan HYK, Weiss J, Menger D, Ulaganathan V, Tkocz K et al. Structure−activity relationship and multidrug resistance study of new S-trityl-l-cysteine derivatives as inhibitors of Eg5. Journal of Medicinal Chemistry 2011; 54 (6): 1576-1586. doi: 10.1021/jm100991m
  • 50. Garcia-Saez I, Bonis S, Lopez R, Trucco F. Structure of human Eg5 in complex with a new monastrol-based inhibitor bound in the R configuration. Journal of Biological Chemistry 2007; 282 (13): 9740-9747. doi: 10.1074/jbc.M608883200
  • 51. Kaan HYK, Ulaganathan V, Rath O, Prokopcova H, Dallinger D et al. Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. Journal of Medicinal Chemistry 2010; 53 (15): 5676-5683. doi: 10.1021/jm100421n
  • 52. Wang F, Good J, Rath O, Kaan HY, Sutcliffe O et al. Triphenylbutanamines: kinesin spindle protein inhibitors with in vivo antitumor activity. Journal of Medicinal Chemistry 2012; 55 (4): 1511-1525. doi: 10.1021/jm201195m
  • 53. Kim ED, Buckley RS, Learman S, Richard J, Parke C et al. Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core. Journal of Biological Chemistry 2010; 285 (24): 18650- 18661. doi: 10.1074/jbc.M109.092072
  • 54. Mohammadi MK, Firuzi O, Khoshneviszadeh M, Razzaghi-Asl N, Sepehri S et al. Novel 9-(alkylthio)-acenaphtho[1,2- e]-1,2,4-triazine derivatives: synthesis, cytotoxic activity and molecular docking studies on B-cell lymphoma 2 (Bcl-2). DARU Journal of Pharmaceutical Sciences 2014; 22 (1): 253-258. doi: 10.1186/2008-2231-22-2
  • 55. Wallace A, Laskowski R, Thornton J. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection 1995; 8 (2): 127-134. doi: 10.1093/protein/8.2.127
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ranolazine-functionalized CuO NPs: efficient homogeneous and heterogeneous catalysts for reduction of 4-nitrophenol

Jan NIISAR, Sirajuddin KHAN, Syed Tufail Hussain SHERAZI, Gul Naz LAGHARI BALOCH, Sarfaraz Ahmed MAHESAR

Synthesis, spectroscopic studies, and antioxidant activities of novel thio/carbohydrazones and bis-isatin derivatives from terephthalaldehyde

Temel Kan BAKIR, Halit MUĞLU, Hasan YAKAN

Development of thermoplastic polyurethane/polyaniline-doped membranes for the separation of glycine through electrodialysis

Naveed SHAHZAD ALI, Abdul GHAFFAR, Shahbaz NAZIR, Tousif HUSSAIN, Asif ALI QAISER, Khurram JOYA, Rashid SALEEM

Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder

Yeliz İPEK

Gabriela PÉREZ-OSORIO, Flor Del Rocío HERNÁNDEZ-GÓMEZ, Janette ARRIOLA-MORALES, Maribel CASTILLO-MORALES, José Carlos MENDOZA-HERNÁNDEZ

SO2 sorption properties of fly ash zeolites

Agnieszka ĆWIK, Paweł BARAN, Wojciech FRANUS, Katarzyna ZARĘBSKA, Natalia CZUMA

Highly improved electrocatalytic oxidation of dimethylamine borane on silver nanoparticles modified polymer composite electrode

Süleyman KOÇAK, Şükriye KARABİBEROĞLU, Zekerya DURSUN, Çağrı Ceylan KOÇAK

Özlem İŞCAN, Reşit CEMALOĞLU, Nuran ASMAFİLİZ, Zeynel KILIÇ, Leyla AÇIK, Pelin ÖZBEDEN, Tuncer HÖKELEK

Gönül YENİLMEZ ÇİFTÇİ, Sergen YILMAZ, Nagihan BAYIK, Elif ŞENKUYTU, Esra Nur KAYA, Mahmut DURMUŞ, Mustafa BULUT

Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units

Gönül YENİLMEZ ÇİFTÇİ, Esra TANRIVERDİ EÇİK, Eda ERDEMİR, Hanife İBİŞOĞLU, Gizem DEMİR, Fatma YÜKSEL