Synthesis and structural analysis of nonstoichiometric ternary fulleride K1.5Ba0.25CsC60

The existence of cation-vacancy sites in fullerides might lead to long-range ordering and generate a new vacancy-ordered superstructure. The purpose of this work is to search whether or not long-range ordering of vacant tetrahedral sites, namely superstructure emerges in nonstoichiometric K-15 Ba0.25CsC60 fulleride. Therefore, K1.5Ba0.25CsC60 with cation-vacancy sites is synthesized using a precursor method to avoid inadequate stoichiometry control and formation of impurity phases within the target composition. For this purpose, first, phase-pure K6C60, BA(6)C(60) and Cs-6 C-60 precursors are synthesized. Stoichiometric quantities of these precursors are used for further reaction with C-60 to afford K1.5Ba0.25CsC60. Rietveld analysis of the high-resolution synchrotron X-ray powder diffraction data of the precursors and K1.5Ba0.25CsC60 confirms that K6C60, Ba6C60 and Cs6C60 are single-phase and they crystallize in a body-centered-cubic structure (Im (3) over bar) as reported in the literature. The analysis also shows that K1.5Ba0.25CsC60 phase can be perfectly modeled using a face-centered cubic structure. No new peaks appear which could have implied the appearance of a superstructure. This suggests that there is no long-range ordered arrangement of vacant tetrahedral sites in K1.5Ba0.25CsC60.

___

  • Alloul H, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.237601
  • Arvanitidis J, 2003, NATURE, V425, P599, DOI 10.1038/nature01994
  • Dresselhaus MS., 1996, SCI FULLERENES CARBO
  • FLEMING RM, 1991, NATURE, V352, P787, DOI 10.1038/352787a0
  • Ganin AY, 2010, NATURE, V466, P221, DOI 10.1038/nature09120
  • Gogia B, 1998, PHYS REV B, V58, P1077, DOI 10.1103/PhysRevB.58.1077
  • HADDON RC, 1991, NATURE, V350, P320, DOI 10.1038/350320a0
  • HEBARD AF, 1991, NATURE, V350, P600, DOI 10.1038/350600a0
  • HOLCZER K, 1991, SCIENCE, V252, P1154, DOI 10.1126/science.252.5009.1154
  • Ihara Y, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.256402
  • Kamaras K, 2013, J PHYS CONF SER, V428, DOI 10.1088/1742-6596/428/1/012002
  • Kasahara Y, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.014413
  • Klupp G, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1910
  • KORTAN AR, 1992, NATURE, V360, P566, DOI 10.1038/360566a0
  • Larson A.C, 1994, LOS ALAMOS NATL LAB, V748, P86, DOI DOI 10.1103/PHYSREVLETT.101.107006
  • Laugier J, 1999, LMGP SUITE PROGRAMS .
  • MCCAULEY JP, 1991, J AM CHEM SOC, V113, P8537, DOI 10.1021/ja00022a060
  • Menelaou M, 2018, INT J MOD PHYS B, V32, DOI 10.1142/S0217979218400209
  • Okur HE, 2019, J PHYS CHEM SOLIDS, V131, P44, DOI 10.1016/j.jpcs.2019.03.017
  • Okur HE, 2016, EXPT INVESTIGATIONS .
  • OZDAS E, 1995, NATURE, V375, P126, DOI 10.1038/375126a0
  • Potocnik A, 2014, CHEM SCI, V5, P3008, DOI 10.1039/c4sc00670d
  • Potocnik A, 2014, SCI REP-UK, V4, DOI 10.1038/srep04265
  • PRASSIDES K, 1994, SCIENCE, V263, P950, DOI 10.1126/science.263.5149.950
  • ROSSEINSKY MJ, 1991, PHYS REV LETT, V66, P2830, DOI 10.1103/PhysRevLett.66.2830
  • STEPHENS PW, 1991, NATURE, V351, P632, DOI 10.1038/351632a0
  • Takabayashi Y, 2009, SCIENCE, V323, P1585, DOI 10.1126/science.1169163
  • TANIGAKI K, 1991, NATURE, V352, P222, DOI 10.1038/352222a0
  • Wzietek P, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.066401
  • YOUNG RA, 1982, J APPL CRYSTALLOGR, V15, P430, DOI 10.1107/S002188988201231X
  • Zadik RH, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500059
  • ZHOU O, 1991, NATURE, V351, P462, DOI 10.1038/351462a0
  • ZHOU O, 1992, J PHYS CHEM SOLIDS, V53, P1373, DOI 10.1016/0022-3697(92)90233-4