Synthesis and characterization of hexagonal boron nitride used for comparison of removal of anionic and cationic hazardous azo-dye: kinetics and equilibrium studies

The purpose of this study was to compare the adsorption behavior of cationic and anionic dyes onto a hexagonal boron nitride (hBN) nanostructure that was rich in a negative charge. Herein, the hBN nanostructure was synthesized using boric acid as a precursor material. The characteristic peaks of the hBN nanostructure were performed using Fourier transform infrared (FT-IR) and Raman spectroscopies. The morphology and the particle size of hBN nanostructure were determined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). During the studies, various essential adsorption parameters were investigated, such as the initial dye concentration, pH of the dye solution, adsorbent dose, and contact time. Under optimal conditions, the removal of 42.6% Metanil yellow (MY) and 90% Victoria blue B (VBB) from aqueous solution was performed using a 10-mg hBN nanostructure. Furthermore, the equilibrium studies showed that the Freundlich isotherm model fitted well for the removal of MY. However, the Langmuir isotherm model fitted well for the removal of VBB. Moreover, according to the results obtained from the kinetic studies, while the first-order kinetic model was suited for the adsorption of the MY, the second-order kinetic model was found to well fit for the adsorption of VBB.

___

  • Alkan M, 2008, CHEM ENG J, V139, P213, DOI 10.1016/j.cej.2007.07.080
  • Anjaneya O, 2011, J HAZARD MATER, V190, P351, DOI 10.1016/j.jhazmat.2011.03.044
  • Arun Kant, 2014, European Chemical Bulletin, V3, P752
  • Cazetta AL, 2011, CHEM ENG J, V174, P117, DOI 10.1016/j.cej.2011.08.058
  • Chang CW, 2006, SCIENCE, V314, P1121, DOI 10.1126/science.1132898
  • Chen SH, 2010, DESALINATION, V252, P149, DOI 10.1016/j.desal.2009.10.010
  • Chen Y, 2004, APPL PHYS LETT, V84, P2430, DOI 10.1063/1.1667278
  • Chiou MS, 2006, CHEMOSPHERE, V62, P731, DOI 10.1016/j.chemosphere.2005.04.068
  • Crimp MJ, 1999, J MATER SCI, V34, P2621, DOI 10.1023/A:1004656817379
  • Demirbas O, 2002, ADSORPTION, V8, P341, DOI 10.1023/A:1021589514766
  • Farhadi S, 2019, MONATSH CHEM, V150, P193, DOI 10.1007/s00706-018-2329-1
  • GILES CH, 1965, J BACTERIOL, V89, P390, DOI 10.1128/JB.89.2.390-397.1965
  • Golberg D, 2007, NANO LETT, V7, P2146, DOI 10.1021/nl070863r
  • Goldberg S., 2005, SOIL SCI SOC AM BOOK, P489
  • Gomaa OM, 2008, WORLD J MICROB BIOT, V24, P2349, DOI 10.1007/s11274-008-9750-2
  • Guo XY, 2013, APPL SURF SCI, V284, P862, DOI 10.1016/j.apsusc.2013.08.023
  • Ho YS, 1999, PROCESS BIOCHEM, V34, P451, DOI 10.1016/S0032-9592(98)00112-5
  • Joni IM, 2011, COLLOID SURFACE A, V388, P49, DOI 10.1016/j.colsurfa.2011.08.007
  • Kannan C, 2013, J HAZARD MATER, V244, P10, DOI 10.1016/j.jhazmat.2012.11.016
  • Koli PB, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2019.103373
  • Koli PB, 2019, J NANOSTRUCTURE CHEM, V9, P95, DOI 10.1007/s40097-019-0300-2
  • Kumar M., 2014, J MAT ENV SCI, V5, P510 .
  • Lagergren S., 1898, K SVEN VETENSK HANDL, V24, P1, DOI DOI 10.1007/BF01501332
  • Lei WW, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9849
  • Lei WW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2818
  • Lelifajri, 2018, J WATER PROCESS ENG, V25, P269, DOI 10.1016/j.jwpe.2018.08.012
  • Li J, 2018, RSC ADV, V8, P32886, DOI 10.1039/c8ra06445h
  • Li J, 2014, MATER RES EXPRESS, V1, DOI 10.1088/2053-1591/1/3/035035
  • Li J, 2013, SCI REP-UK, V3, DOI 10.1038/srep03208
  • Liang HW, 2011, ADV FUNCT MATER, V21, P3851, DOI 10.1002/adfm.201100983
  • Liu XT, 2013, J ENVIRON SCI, V25, P1263, DOI 10.1016/S1001-0742(12)60161-2
  • Liu ZY, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19541-5
  • Mahdizadeh A, 2017, RSC ADV, V7, P53984, DOI 10.1039/c7ra11248c
  • Mittal A, 2008, J HAZARD MATER, V151, P821, DOI 10.1016/j.jhazmat.2007.06.059
  • Mohan SV, 1997, ENVIRON POLLUT, V97, P183, DOI 10.1016/S0269-7491(97)00025-0
  • Permentier K, 2017, INT J EMERG MED, V10, DOI 10.1186/s12245-017-0142-y
  • Robinson T, 2001, BIORESOURCE TECHNOL, V77, P247, DOI 10.1016/S0960-8524(00)00080-8
  • Sen O, 2018, FRONT BIOENG BIOTECH, V6, DOI 10.3389/fbioe.2018.00083
  • Shen TT, 2019, J MATER SCI, V54, P8852, DOI 10.1007/s10853-019-03514-8
  • Singla P, 2015, CERAM INT, V41, P10565, DOI 10.1016/j.ceramint.2015.04.151
  • Song QQ, 2017, CHEM ENG J, V325, P71, DOI 10.1016/j.cej.2017.05.057
  • Toh YC, 2003, ENZYME MICROB TECH, V33, P569, DOI 10.1016/S0141-0229(03)00177-7
  • Tural S, 2016, DESALIN WATER TREAT, V57, P13347, DOI 10.1080/19443994.2015.1056842
  • Wadwa K, 1988, ADV PHOTOCHEMOTHERAP, V997, P154, DOI [10.1117/12.960199, DOI 10.1117/12.960199]
  • WEBER TW, 1974, AICHE J, V20, P228, DOI 10.1002/aic.690200204
  • Wu RC, 2005, WATER RES, V39, P630, DOI 10.1016/j.watres.2004.11.005
  • Yesilada O, 2003, PROCESS BIOCHEM, V38, P933, DOI 10.1016/S0032-9592(02)00197-8
  • Yuliarto B, 2015, ADV MATER SCI ENG, V2015, DOI 10.1155/2015/694823
  • Zeng HB, 2010, NANO LETT, V10, P5049, DOI 10.1021/nl103251m
  • Zhang X, 2012, CRYSTENGCOMM, V14, P4670, DOI 10.1039/c2ce06748j
  • Zhao G, 2016, ADV OPT MATER, V4, P141, DOI 10.1002/adom.201500415
  • Zhi CY, 2009, ADV MATER, V21, P2889, DOI 10.1002/adma.200900323