Syntheses and antibacterial activities of 4 linear nonphenolic diarylheptanoids

Four linear nonphenolic diarylheptanoids were synthesized and their antibacterial activities were studied. $S $-2-Me-CBS-catalysed reduction of alnustone with BH$_{3}$.SMe$_{2}$ gave $R $ - 4$E$,6$E $-1,7-diphenylhepta-4,6-dien-3-ol, a natural product. Reduction of alnustone with Na in t-BuOH at -15 $^{\circ}$C under NH$_{3}$ atm gave $E $-1,7-diphenylhept-5-en-3-one as a Birch-type reduction product. $t$-BuOK catalysed condensation of benzalacetone with propionyl chloride gave 4$Z$,6$E $-5-hydroxy-1,7-diphenylhepta-4,6-dien-3-one, a natural product. 1$E$,4$Z$,6$E $-5-Hydroxy-4-phenethyl-1,7-diphenylhepta-1,4,6-trien-3-one, a curcuminoid, was synthesized starting from pentan-2,4-dione in 3 steps. The synthesized chemical compounds were applied against 2 gram-positive bacteria Bacillus cereus and Arthrobacter agilis , 4 gram-negative bacteria Pseudomonas aeruginosa, Xanthomonas campestris, Klebsiella oxytoca and Helicobacter pylori , and 1 yeast Candida albicans by the disc diffusion method. All of the synthesized compound exhibited different degrees of antimicrobial activity at concentrations between 20-100 μg/disc against the test organisms.

___

  • 1. Claeson P, Tuchinda P, Reutrakul V. Naturally occurring 1,7-diarylheptanoids. Journal of Indian Chemical Society 1994; 71: 509-521.
  • 2. Suga T, Asakawa Y, Iwata N. 1,7-Diphenyl-1,3-heptadien-5-one : a new ketone from Alnus pendula (Betulaceae). Chemistry and Industry (London) 1971; 27: 766.
  • 3. Suga T, Iwata N, Asakawa Y. Chemical constituents of the male flower of Alnus pendula (Betulaceae). Bulletin of the Chemical Society of Japan 1972; 45: 2058-2060. doi: 10.1246/bcsj.45.2058
  • 4. Hikino H, Kiso Y, Kato N, Hamada Y, Shioiri T et al. Antihepatotoxic actions of gingerols and diarylheptanoids. Journal of Ethnopharmacology 1985; 14: 31-39. doi: 10.1016/0378-8741(85)90025-X
  • 5. Claeson P, Panthong A, Tuchinda P, Reutrakul V, Kanjanapothi D et al. Three non-phenolic diarylheptanoids with anti-inflammatory activity from Curcuma xanthorrhiza. Planta Medica 1993; 59: 451-454. doi: 10.1055/s2006-959730
  • 6. Huang W, Dai X, Liu Y, Zhang C, Zhang M et al. Studies on antibacterial activity of flavonoids and diarylheptanoids from Alpinia katsumadai. Journal of Plant Resources and Enviroment 2006; 15: 37-40.
  • 7. Huang W, Zhang C, Zhang M, Wang Z. A New Biphenylpropanoid from Alpinia katsumadai. Journal of the Chinese Chemical Society 2007; 54: 1553-1556. doi: 10.1002/jccs.200700218
  • 8. Suksamrarn A, Ponglikitmongkol M, Wongkrajang K, Chindaduang A, Kittidanairak S et al. Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation. Bioorganic & Medicinal Chemistry 2008; 16: 6891-6902. doi: 10.1016/j.bmc.2008.05.051
  • 9. Jurgens TM, Frazier EG, Schaeffer JM, Jones TE, Zink DL et al. Novel nematocidal agents from Curcuma comosa. Journal of Natural Product 1994; 57 (2): 230-235. doi: 10.1021/np50104a006
  • 10. Tantikanlayaporn D, Robinson LJ, Suksamrarn A, Piyachaturawat P, Blair HC. A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7-diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation. Phytomedicine 2013; 20: 676-682. doi: 10.1016/j.phymed.2013.02.008
  • 11. Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A et al. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in Ovariectomized Rats. Plos One 2013; 8 (11): e78739. doi: 10.1371/journal.pone.0078739
  • 12. Zhang B, Dai Y, Liao Z, Ding L. Three new antibacterial active diarylheptanoids from Alpinia officinarum. Fitoterapia 2010; 8: 948-952. doi: 10.1016/j.fitote.2010.06.015
  • 13. Kuroyanagi M, Noro T, Fukushima S, Aiyama R, Ikuta A et al. Studies on the constituents of the seeds of Alpinia katsumadai HAYATA. Chemical and Pharmaceutical Bulletin 1983; 31 (5): 1544-1550. doi: 10.1248/cpb.31.1544
  • 14. Tori M, Hashimoto A, Hirose K, Asakawa Y. Diarylheptanoids, flavonoids, stilbenoids, sesquiterpenoids and a phenanthrene from Alnus maximowıczii. Phytochemistry 1995; 40 (4): 1263-1264. doi: 10.1016/0031-9422(95)00439- E
  • 15. Zhu Y, Li S, Zhao S, Tian Q, Luo Y et al. Chemical constituents of Alpinia officinarum Hance. Yunnan Minzu Daxue Xuebao, Ziran Kexueban 2013; 22 (4): 239-241. doi: 10.3969/j.issn.1672-8513.2013.04.002
  • 16. Rameshkumar KB, Alan Sheeja DB, Nair MS, George V. Curcuma ecalcarata-new natural source of pinocembrin and piperitenone. Natural Product Letters 2015; 29 (13): 1276-1279. doi: 10.1080/14786419.2014.994210
  • 17. Grienk U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P et al. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. Journal of Medicinal Chemistry 2010; 53: 778-786. doi: 10.1021/jm901440f
  • 18. Sakakibara M, Mori K, Matsui M. Synthesis of 1,7-diphenyl-1,3-heptadien-5-one, one of the components in the fresh catkin of Alnus pendula. Agricultural and Biological Chemistry 1972; 36 (10): 1825-1827. doi: 10.1271/bbb1961.36.1825
  • 19. Vig OP, Ahuja VD, Sehgal VK, Vig AK. Synthesis of 1,7-diphenyl-trans, trans-1,3-heptadien-5-one (Alnustone). Indian Journal of Chemistry 1975; 13: 1129-1130.
  • 20. Vig OP, Bari SS, Sattar MA, Sharma S, Mahajan N. New synthesis of alnustone, tagetone and dihydrotagetone from β -keto phosphonate. Journal of the Indian Chemical Society 1989; 66: 98-100.
  • 21. Kato N, Hamada Y, Shioiri T. New methods and reagents in organic synthesis. A general, efficient, and convenient synthesis of diarylheptanoids. Chemical and Pharmaceutical Bulletin 1984; 32 (8): 3323-3326. doi: 10.1248/cpb.32.3323
  • 22. Göksu S, Çelik H, Seçen H. An efficient synthesis of alnustone, a naturally occurring compound. Turkish Journal of Chemistry 2003; 27: 31-34.
  • 23. Küçükoğlu K, Seçinti H, Özgür A, Seçen H, Tutar Y. Synthesis, molecular docking, and antitumoral activity of alnustone-like compounds against estrogen receptor alpha-positive human breast cancer. Turkish Journal of Chemistry 2015; 39: 179-193. doi: 10.3906/kim-1408-72
  • 24. Borsche W, Lewinsohn M. Constituents of the kawa root. XIV. Cinnamoylacetic ester. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen 1933; 66B: 1792-1801 (Chem. Abstr. 1934, 28:8301).
  • 25. Yang Y, Kinoshita K, Koyama K, Takahashi K, Kondo S et al. Structure-antiemetic-activity of some diarylheptanoids and their analogues. Phytomedicine 2002; 9: 146-152. doi: 10.1078/0944-7113-00091
  • 26. Mathre DJ, Shinkai I. Tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole. In: e-EROS Encylopedia of Reagents for Organic Synthesis, 2013. doi: 10.1002/047084289X.rt035s.pub3
  • 27. Corey EJ, Bakshi RK, Shibata S, Chen C, Singh VK. A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. Journal of the American Chemical Society 1987; 109: 7925-7926. doi: 10.1021/ja00259a075
  • 28. Menzek A, Karakaya GM, Kaya AA. Reductions of benzene derivatives whose benzylic positions bear oxygen atoms under mild conditions. Helvetica Chimica Acta 2008; 91: 2299-2307. doi: 10.1002/hlca.200890250
  • 29. Altundaş A, Menzek A, Gültekin DD, Karakaya M. Excellent and convenient procedures for reduction of benzene and its derivatives. Turkish Journal of Chemistry 2005; 29: 513-518.
  • 30. Hyugano T, Liu S, Ouchi A. Facile photochemical transformation of alkyl aryl selenides to the corresponding carbonyl compounds by molecular oxygen: use of selenides as masked carbonyl groups. The Journal of Organic Chemistry 2008; 73: 8861-8866. doi: 10.1021/jo801730j
  • 31. Pandey SK, Greene AE, Poisson JF. Terminal olefins from aldehydes through enol triflate reduction. The Journal of Organic Chemistry 2007; 72: 7769-7770. doi: 10.1021/jo071151o
  • 32. Krishnamurty HG, Ghosh S. Synthesis of dihydrocurcumin. Indian Journal of Chemistry 1986; 25B: 411-412.
  • 33. Nichols CE, Youssef D, Harris RG, Jha A. Microwave-assisted synthesis of curcumin analogs. Arkivoc 2006; (13): 64-72. doi: 10.3998/ark.5550190.0007.d07
  • 34. Changtam C, Hongmanee P, Suksamrarn A. Isoxazole analogs of curcuminoids with highly potent multidrugresistant antimycobacterial activity. European Journal of Medicinal Chemistry 2010; 45: 4446-4457. doi: 10.1016/j.ejmech.2010.07.003
  • 35. McCarroll AJ, Walton JC. On the preparation of cyclopentadienes by a novel homolytic annulation of but-3-en-1- ones with alkynes mediated by samarium diiodide. Arkivoc 2002; (3): 55-62. doi: 10.3998/ark.5550190.0003.305
  • 36. Özdal M, Özdal ÖG, Sezen A, Algur ÖF. Biosynthesis of indole-3-acetic acid by Bacillus cereus immobilized cells. Cumhuriyet Science Journal 2016; 37 (3): 212-222.
  • 37. Ozdal M, Ozdal OG, Sezen A, Algur OF, Kurbanoglu EB. Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis. 3 Biotech 2017; 7: 23 (6 pages). doi: 10.1007/s13205-017-0605-0
  • 38. Ozdal M, Ozdal OG, Algur OF. Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish Journal of Microbiology 2016; 65 (1): 63-68. doi: 10.5604/17331331.1197325
  • 39. Ozdal M, Kurbanoglu, EB. Use of chicken feather peptone and sugar beet molasses as low cost substrates for xanthan production by Xanthomonas campestris MO-03. Fermentation 2019; 5 (1): 9. doi: 10.3390/fermentation5010009
  • 40. Kara AA, Algur ÖF, Köseoğlu MŞ. Antimicrobial activities of some herbs on Helicobacter pylori. Cumhuriyet University Faculty of Science 2016; 37 (2): 129-140. doi: 10.17776/csj.32537