Sorption studies of europium on cerium phosphate using Box-Behnken design

Amorphous cerium phosphate was prepared and characterized. Three-level Box-Behnken design (BBD) was employed to analyze the effect of process variables such as initial pH (2-6), contact time (60-180 min), and sorbent amount (0.05-0.15 g) on the sorption capacity of europium. Analysis of variance (ANOVA) revealed that the main effect of initial pH and sorbent amount has a substantial impact on the sorption of Eu(III). Probability F-value (F = 3 x 10(-3)) and correlation coefficient (R-2 = 0.97) point out that the model is in good accordance with experimental data. The maximum sorption capacity of Eu(III) was found to be 42.14 mg g(-1) at initial pH 6, contact time of 180 min, and a sorbent amount of 0.05 g. Sorption isotherm data was well explained by the Langmuir model and monolayer Eu(III) sorption capacity was obtained as 30.40 mg g(-1). Kinetic data were well described by the pseudo-second-order model. Thermodynamic data suggested that the process is endothermic and spontaneous.

___

  • Apsara A. P., 2014, RES J CHEM ENV SCI, V2, P18
  • Binnemans K, 2013, J CLEAN PROD, V51, P1, DOI 10.1016/j.jclepro.2012.12.037
  • BO L, 2001, J MATER SCI LETT, V20, P1071
  • Borai EH, 2019, PARTICUL SCI TECHNOL, V37, P410, DOI 10.1080/02726351.2017.1385550
  • Box G., 1987, EMPIRICAL MODEL BUIL .
  • Carmona MER, 2005, PROCESS BIOCHEM, V40, P779, DOI 10.1016/j.procbio.2004.02.024
  • Diniz V, 2005, WATER RES, V39, P239, DOI 10.1016/j.watres.2004.09.009
  • DUBININ MM, 1947, ZH FIZ KHIM+, V21, P1351
  • El-Gammal B, 2006, COLLOID SURFACE A, V287, P132, DOI 10.1016/j.colsurfa.2006.02.068
  • El-Kamash AM, 2007, J HAZARD MATER, V141, P719, DOI 10.1016/j.jhazmat.2006.07.041
  • Foo KY, 2010, CHEM ENG J, V156, P2, DOI 10.1016/j.cej.2009.09.013
  • Freundlich H, 1906, Z PHYS CHEM-STOCH VE, V57, P385
  • Furuhashi Y, 2019, BIOCHEM ENG J, V143, P58, DOI 10.1016/j.bej.2018.12.007
  • Garcia-Glez J, 2017, ARAB J CHEM, V10, P885, DOI 10.1016/j.arabjc.2016.07.013
  • Gercel O, 2007, APPL SURF SCI, V253, P4843, DOI 10.1016/j.apsusc.2006.10.053
  • Gunaraj V, 1999, J MATER PROCESS TECH, V88, P266, DOI 10.1016/S0924-0136(98)00405-1
  • Hamza MF, 2018, CHEM ENG J, V344, P124, DOI 10.1016/j.cej.2018.03.029
  • Hanna A., 2010, EUR J CHEM, V1, P211, DOI DOI 10.5155/EURJCHEM.1.3.211-215.69
  • Hassan HS, 2019, MATER CHEM PHYS, V234, P55, DOI 10.1016/j.matchemphys.2019.05.081
  • Ho YS, 1999, WATER RES, V33, P578, DOI 10.1016/S0043-1354(98)00207-3
  • Inan S, 2011, CHEM ENG J, V168, P1263, DOI 10.1016/j.cej.2011.02.038
  • Kapnisti MG, 2018, J ENVIRON CHEM ENG, V6, P3408, DOI 10.1016/j.jece.2018.05.010
  • Lagergren S., 1998, HANDLINGE, V24, P147
  • Langmuir I, 1918, J AM CHEM SOC, V40, P1361, DOI 10.1021/ja02242a004
  • Li MX, 2017, J MOL LIQ, V236, P445, DOI 10.1016/j.molliq.2017.04.046
  • Mahajan G, 2011, BIORESOURCES, V6, P3324
  • Mansy MS, 2017, APPL RADIAT ISOTOPES, V130, P198, DOI 10.1016/j.apradiso.2017.09.042
  • Masui T, 2003, PHYS STATUS SOLIDI A, V198, P364, DOI 10.1002/pssb.200306623
  • Metwally SS, 2011, SEP SCI TECHNOL, V46, P1808, DOI 10.1080/01496395.2011.572328
  • Misaelides P, 2006, J RADIOANAL NUCL CH, V268, P53, DOI 10.1007/s10967-006-0123-8
  • Montgomery D.C., 2001, DESIGN ANAL EXPT .
  • Mourabet M, 2015, J SAUDI CHEM SOC, V19, P603, DOI 10.1016/j.jscs.2012.03.003
  • Nayak AK, 2017, J ENVIRON MANAGE, V200, P145, DOI 10.1016/j.jenvman.2017.05.045
  • Nilchi A, 1999, SEPAR SCI TECHNOL, V34, P1833, DOI 10.1081/SS-100100741
  • Rim KT, 2013, SAF HEALTH WORK, V4, P12, DOI 10.5491/SHAW.2013.4.1.12
  • Sivaiah MV, 2004, COLLOID SURFACE A, V236, P147, DOI 10.1016/j.colsurfa.2004.02.006
  • Sofronov D, 2019, PROCESS SAF ENVIRON, V125, P157, DOI 10.1016/j.psep.2019.03.013
  • Verma PK, 2019, APPL CLAY SCI, V175, P22, DOI 10.1016/j.clay.2019.03.001
  • Verma S., 2014, J NANOPARTICLES, V2014, P1, DOI [10.1155/2014/125360, DOI 10.1155/2014/125360]
  • Wu WW, 2009, RARE METALS, V28, P33, DOI 10.1007/s12598-009-0007-5