Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol

Ni(II)/CSs were prepared using a simple two-step hydrothermal method. The morphology and composition of the catalysts were studied with scanning electron microscope, transmission electron microscope, and X-ray diffraction. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the surface of the prepared carbon spheres was rich in hydroxyl groups, which was beneficial to remove CO intermediates, and therefore, improving the catalytic efficiency and the antipoisoning ability of the catalysts. The results of cyclic voltammetry and chronoamperometry showed that the electrocatalytic activity and stability of Ni(II)/CSs were higher than that of unloaded NiAc under alkaline environment. When the nickel content was 5 wt.%, the peak oxidation current density of methanol on Ni(II)/CSs electrocatalyst reached the maximum of 34.54 mA/cm(2), which was about 1.8 times that of unloaded NiAc. These results indicate that Ni(II)/CSs has potential applications in the electrocatalytic oxidation of methanol.

___

  • Barakat NAM, 2018, APPL CATAL A-GEN, V555, P148, DOI 10.1016/j.apcata.2018.02.016
  • Barakat NAM, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-2
  • Chen ST, 2019, CATALYSTS, V9, DOI 10.3390/catal9010039
  • Cheng FY, 2012, CHEM SOC REV, V41, P2172, DOI 10.1039/c1cs15228a
  • Cheng Y, 2014, APPL CATAL B-ENVIRON, V158, P140, DOI 10.1016/j.apcatb.2014.04.017
  • Dong B, 2019, NANO ENERGY, V55, P37, DOI 10.1016/j.nanoen.2018.10.050
  • Feng Y, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700580
  • Ghouri ZK, 2015, CERAM INT, V41, P2271, DOI 10.1016/j.ceramint.2014.10.031
  • Gu YY, 2020, INT J ELECTROCHEM SC, V15, P2481, DOI 10.20964/2020.03.41
  • Gu YY, 2015, J NANOSCI NANOTECHNO, V15, P3743, DOI 10.1166/jnn.2015.9528
  • Hameed RMA, 2015, APPL SURF SCI, V357, P417, DOI 10.1016/j.apsusc.2015.08.201
  • Hasan M, 2012, J POWER SOURCES, V218, P148, DOI 10.1016/j.jpowsour.2012.06.017
  • Hu B, 2010, ADV MATER, V22, P813, DOI 10.1002/adma.200902812
  • Hu GZ, 2012, J POWER SOURCES, V209, P236, DOI 10.1016/j.jpowsour.2012.02.080
  • Jothi PR, 2015, J POWER SOURCES, V277, P350, DOI 10.1016/j.jpowsour.2014.11.137
  • Kang SM, 2012, IND ENG CHEM RES, V51, P9023, DOI 10.1021/ie300565d
  • Li GC, 2006, J POWER SOURCES, V161, P256, DOI 10.1016/j.jpowsour.2006.03.071
  • Li K, 2017, J MATER CHEM A, V5, P19857, DOI 10.1039/c7ta06700c
  • Li M, 2011, CARBOHYD RES, V346, P999, DOI 10.1016/j.carres.2011.03.020
  • Liu XJ, 2020, ENERG FUEL, V34, P10078, DOI 10.1021/acs.energyfuels.0c01850
  • Lyu FC, 2017, CHEM COMMUN, V53, P2138, DOI 10.1039/c6cc09702b
  • Montoya JH, 2017, NAT MATER, V16, P70, DOI [10.1038/nmat4778, 10.1038/NMAT4778]
  • Nassr AAA, 2014, ACS CATAL, V4, P2449, DOI 10.1021/cs401140g
  • Qian WW, 2017, ELECTROCHIM ACTA, V235, P32, DOI 10.1016/j.electacta.2017.03.063
  • Rahim MAA, 2004, J POWER SOURCES, V134, P160, DOI 10.1016/j.jpowsour.2004.02.034
  • Rossmeisl J, 2012, ENERG ENVIRON SCI, V5, P8335, DOI 10.1039/c2ee21455e
  • Ryu J, 2010, CARBON, V48, P1990, DOI 10.1016/j.carbon.2010.02.006
  • Sevilla M, 2009, CARBON, V47, P2281, DOI 10.1016/j.carbon.2009.04.026
  • Sevilla M, 2009, CHEM-EUR J, V15, P4195, DOI 10.1002/chem.200802097
  • Sneed BT, 2014, ACS NANO, V8, P7239, DOI 10.1021/nn502259g
  • Song MC, 2016, CHINESE J INORG CHEM, V32, P975, DOI 10.11862/CJIC.2016.124
  • Sun H, 2012, NANO RES, V5, P726, DOI 10.1007/s12274-012-0257-7
  • Titirici MM, 2010, CHEM SOC REV, V39, P103, DOI 10.1039/b819318p
  • Ulas B, 2018, J COLLOID INTERF SCI, V532, P47, DOI 10.1016/j.jcis.2018.07.120
  • Wang BR, 2018, INORG CHEM FRONT, V5, P172, DOI 10.1039/c7qi00583k
  • Wang Q, 2001, CARBON, V39, P2211, DOI 10.1016/S0008-6223(01)00040-9
  • Wang TJ, 2019, NANOSCALE, V11, P19783, DOI 10.1039/c9nr06304h
  • Wang ZL, 2014, CHEM SOC REV, V43, P7746, DOI 10.1039/c3cs60248f
  • Wei L, 2011, ADV ENERGY MATER, V1, P356, DOI 10.1002/aenm.201100019
  • Wu LH, 2015, APPL SURF SCI, V351, P320, DOI 10.1016/j.apsusc.2015.05.152
  • Wu ND, 2016, J ALLOY COMPD, V656, P628, DOI 10.1016/j.jallcom.2015.10.027
  • Yang Y, 2016, ELECTROCHIM ACTA, V222, P1094, DOI 10.1016/j.electacta.2016.11.080
  • Yaqoob L, 2019, CATALYSTS, V9, DOI 10.3390/catal9100856
  • Yin SL, 2020, NANOSCALE ADV, V2, P1084, DOI 10.1039/d0na00020e
  • You B, 2013, CHEM COMMUN, V49, P5016, DOI 10.1039/c3cc41949e
  • Yu HX, 2020, SEP PURIF TECHNOL, V247, DOI 10.1016/j.seppur.2020.116889
  • Yu J, 2018, J PHYS CHEM SOLIDS, V112, P119, DOI 10.1016/j.jpcs.2017.09.022
  • Yu M, 2015, ELECTROCHIM ACTA, V151, P99, DOI 10.1016/j.electacta.2014.10.156
  • Yu XL, 2015, MATER LETT, V142, P193, DOI 10.1016/j.matlet.2014.11.160
  • Zhai CP, 2018, RSC ADV, V8, P36353, DOI 10.1039/c8ra07848c
  • Zhan GH, 2016, J POWER SOURCES, V326, P84, DOI 10.1016/j.jpowsour.2016.06.112
  • Zhang C, 2015, J MATER CHEM A, V3, P10519, DOI 10.1039/c5ta01071c
  • Zhang YM, 2017, APPL SURF SCI, V407, P64, DOI 10.1016/j.apsusc.2017.02.158
  • Zhu LD, 2009, J POWER SOURCES, V187, P80, DOI 10.1016/j.jpowsour.2008.10.089