Revisiting the biodesulfurization capability of hyperthermophilic archaeon Sulfolobus solfataricus P2 revealed DBT consumption by the organism in an oil/water two-phase liquid system at high temperatures

The ability of the hyperthermophilic archaeon Sulfolobus solfataricus P2 to grow on organic and inorganic sulfur sources was investigated. A sulfur-free mineral medium was employed with different sources of carbon. The results showed that inorganic sulfur sources display growth curve patterns significantly different from the curves obtained with organic sulfur sources. Solfataricus has the ability to utilize DBT and its derivatives, but it lacks BT utilization. Solfataricus} utilizes DBT at a rate of 1.23 \mu mol 2-HBP h^{-1} g DCW^{-1} even at 78 °C, at which DBT is known to be unstable. After enabling DBT stabilization using a two-phase culture system, stable microbial growth was achieved showing a desulfurization rate of 0.34 \mu M DBT g DCW^{-1} h^{-1}. Solfataricus offers beneficial properties compared to the other desulfurizing mesophilic/moderate thermophilic bacteria due to its capacity to utilize DBT and its derivatives under hyperthermophilic conditions.

Revisiting the biodesulfurization capability of hyperthermophilic archaeon Sulfolobus solfataricus P2 revealed DBT consumption by the organism in an oil/water two-phase liquid system at high temperatures

The ability of the hyperthermophilic archaeon Sulfolobus solfataricus P2 to grow on organic and inorganic sulfur sources was investigated. A sulfur-free mineral medium was employed with different sources of carbon. The results showed that inorganic sulfur sources display growth curve patterns significantly different from the curves obtained with organic sulfur sources. Solfataricus has the ability to utilize DBT and its derivatives, but it lacks BT utilization. Solfataricus} utilizes DBT at a rate of 1.23 \mu mol 2-HBP h^{-1} g DCW^{-1} even at 78 °C, at which DBT is known to be unstable. After enabling DBT stabilization using a two-phase culture system, stable microbial growth was achieved showing a desulfurization rate of 0.34 \mu M DBT g DCW^{-1} h^{-1}. Solfataricus offers beneficial properties compared to the other desulfurizing mesophilic/moderate thermophilic bacteria due to its capacity to utilize DBT and its derivatives under hyperthermophilic conditions.

___

  • Monticello, D. J. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 2000, 11, 540–546.
  • EPA. Heavy-duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. EPA420- F-400-057, 2000.
  • Le Borgne, S.; Quintero, R. Biotechnological processes for the refining of petroleum. Fuel Process Technol. 2003, 81, 155–169.
  • Chen, H.; Zhang, W. J.; Chen, J. M.; Cai, Y. B.; Li, W. Desulfurization of various organic sulfur compounds and
  • the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour. Technol. 2008, 99, 3630–3634.
  • Matsui, T.; Onaka, T.; Maruhashi, K.; Kurane, R. Benzo[b]thiophene desulfurization by Gordonia rubropertinctus
  • strain T08. Appl. Microbiol. Biotechnol. 2001, 57, 212–215.
  • Gray, K. A.; Pogrebinsky, O. S.; Mrachko, G. T.; Xi, L.; Monticello, D. J.; Squires, C. H. Molecular mechanisms
  • of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 1996, 14, 1705–1709.
  • Patel, S. B.; Kilbane, J. J.; Webster, D. A. Biodesulphurisation of dibenzothiophene in hydrophobic media by
  • Rhodococcus sp. strain IGTS8. J. Chem. Technol. Biotechnol. 1997, 69, 100–106.
  • Ohshiro, T.; Hirata, T.; Hashimoto, I.; Izumi, Y. Characterization of dibenzothiophene desulfurization reaction by
  • whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J. Ferment. Bioeng. 1996, 82, 610–612.
  • Wang, M. D.; Li, W.; Wang, D. H.; Shi, Y. Desulfurization of dibenzothiophene by a newly isolated Corynebacterium
  • sp ZD-1 in aqueous phase. J. Environ. Sci. (China) 2004, 16, 1011–1015.
  • Kirimura, K.; Furuya, T.; Nishii, Y.; Ishii, Y.; Kino, K.; Usami, S. Biodesulfurization of dibenzothiophene and its
  • derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus
  • subtilis WU-S2B. J. Biosci. Bioeng. 2001, 91, 262–266. 11.Furuya, T.; Ishii, Y.; Nada, K.; Kino, K.; Kirimura, K. Thermophilic biodesulphurization of hydrodesulfurized
  • light gas oils by Mycobacterium phlei WU-F1. FEMS Microbiol. Lett. 2003, 221, 137–142. 12.Kargi, F.; Robinson, J. M. Microbial desulfurization of coal by thermophilic microorganism Sulfolobus acidocal
  • darius. Biotechnol. Bioeng. 1982, 24, 2115–2121. 13.Kargi, F.; Robinson, J. M. Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus
  • acidocaldarius. Biotechnol. Bioeng. 1984, 26, 687–690. 14.Kargi, F.; Robinson, J. M. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus
  • acidocaldarius. Biotechnol. Bioeng. 1985, 27, 41–49. 15.Constanti, M.; Giralt, J.; Bordons, A.; Norris, P. R. Interactions of thiophenes and acidophilic, thermophilic
  • bacteria. Appl. Biochem. Biotechnol. 1992, 34, 767–776. 16.Sato, T.; Atomi, H. Novel metabolic pathways in archea. Curr. Opin. Microbiol. 2011, 14, 307–314. 17.Kouril, T.; Esser, D.; Kort, J.; Westerhoff, H. V.; Siebers, B.; Snoep, J. L. Intermediate instability at high
  • temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus
  • solfataricus. FEBS J. 2013, 280, 4666–4680. 18.Alves, L.; Salgueiro, R.; Rodrigues, C.; Mesquita, E.; Matos, J.; Girio, F. M. Desulfurization of dibenzothiophene,
  • benzothiophene and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B.
  • Appl. Biochem. Biotechnol. 2005, 120, 199–208. 19.Oldfield, C.; Wood, N. T.; Gilbert, S. C.; Murray, F. D.; Faure, F. R. Desulphurisation of benzothiophene and
  • dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie van
  • Leeuwenhoek 1998, 74, 119–132. 20.Luo, M. F.; Xing, J. M.; Gou, Z. X.; Li, S.; Liu, H. Z.; Chen, J. Y. Desulfurization of dibenzothiophene by
  • lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem. Eng. J. 2003, 13, 1–6. 21.Konishi, J.; Onaka, T.; Ishii, Y.; Susuki, M. Demonstration of the carbon-sulfur bond targeted desulfurization of
  • benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS
  • Microbiol. Lett. 2000, 187, 151–154.
  • Ma, T.; Li, G.; Li, J.; Liang, F.; Liu, R. Desulfurization of dibenzothiophene by Bacillus subtilis recombinants
  • carrying dszABC and dszD genes. Biotechnol. Lett. 2006, 28, 1095–1100.
  • Caro, A.; Boltes, K.; Leton, P.; Garcia-Calvo, E. Dibenzothiophene biodesulfurization in resting cell conditions by
  • aerobic bacteria. Biochem. Eng. J. 2007, 35, 191–197.
  • Honda, H.; Sugiyama, H.; Saito, I.; Kobayashi, T. High cell density culture of Rhodococcus rhodochrous by pH-stat
  • feeding and dibenzothiophene degradation. J. Ferment. Bioeng. 1998, 85, 334–338.
  • Marzona, M.; Pessione, E.; Di Martin, S.; Giunta, C. Benzothiophene and dibenzothiophene as the sole sulfur
  • source in Acinetobacter : growth kinetics and oxidation products. Fuel Process. Technol. 1997, 52, 199–205.
  • Li, F. L.; Zhang, Z. Z.; Feng, J. H.; Cai, X. F.; Xu, P. Biodesulfurization of DBT in tetradecane and crude oil by
  • a facultative thermophilic bacterium Mycobacterium goodii X7B. J. Biotechnol. 2007, 127, 222–228.
  • Ma, C. Q.; Feng, J. H.; Zeng, Y. Y.; Cai, X. F.; Sun, B. P.; Zhang, Z. B.; Blankespoor, H. D.; Xu, P. Methods for
  • the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 2006, 65, 165–169.
  • Aono, R.; Aibe, K.; Inoue, A.; Horikoshi, K. Preparation of organic solvent-tolerant mutants from Escherichia coli
  • K- Agric. Biol. Chem. 1991, 55, 1935–1938. 29.Le´on, R.; Fernandes, P.; Pinheiro, H. M.; Cabral, J. M. S. Whole-cell biocatalysis in organic media. Enzyme Microb.
  • Technol. 1998, 23, 483–500.
  • Maghsoudi, S.; Vossoughi, M.; Kheirolomoom, A.; Tanaka, E.; Katoh, S. Biodesulfurization of hydrocarbons and
  • diesel fuels by Rhodococcus sp. strain P32C1. Biochem. Eng. J. 2001, 8, 151–156.
  • Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L. Sulfolobus - new genus of sulfur-oxidizing bacteria living at
  • low pH and high-temperature. Arch. Microbiol. 1972, 84, 54–56. 32.Evans, P.; Wolff-Briche, C.; Fairman, B. High accuracy analysis of low level sulfur in diesel fuel by isotope
  • dilution high resolution ICP-MS, using silicon for mass bias correction of natural isotope ratios. J. Anal. Atom.
  • Spectrom. 2001, 16, 964–969.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ring opening and ring closure reactions of chromone-3-carboxylic acid: unexpected routes to synthesize functionalized benzoxocinones and heteroannulated pyranochromenes

Magdy Ahmed IBRAHIM, Tarik El-sayed ALI

HPLC fluorescence determination of ochratoxin A utilizing a double internal standard and its application to poultry feed

Muzaffer TUNÇEL, Elif Mine Öncü KAYA, Ülkü Dilek UYSAL, Tufan GÜRAY

Revisiting the biodesulfurization capability of hyperthermophilic archaeon Sulfolobus solfataricus P2 revealed DBT consumption by the organism in an oil/water two-phase liquid system at high temperatures

GÖKHAN GÜN, YUDA YÜRÜM, GİZEM DİNLER DOĞANAY

Effect of sonic treatment on the permeation performance of cellulose acetate membranes modified by n-SiO_2

Gülsen ASMAN, Mürvet KAYA, Nursel Pekel BAYRAMGİL

Synthesis of new oxindole derivatives containing benzothiazole and thiazolidinone moieties using nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) as catalyst

ROBABEH BAHARFAR, NARGES SHARIATI

Fluorescent mono- and tetra-dansylated cavitands: synthesis and acid sensitivity

ÜMİT İŞCİ, YUNUS ZORLU, FABIENNE DUMOULIN

Synthesis, characterization, and metal extraction studies of a new macrobicyclic ligand

Halil Zeki GÖK, Yaşar GÖK, Esra EKER

Gaseous and dissolved oxygen sensing with stabilized pyrene in ionic liquid modified electrospun slides

Özlem ÖTER, Gülhan Sabanci ŞAHİN

Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors

MEHDI RIMAZ, PARIA POURHOSSEIN, BEHZAD KHALILI

Synthesis and biological evaluation of new pyridines containing imidazole moiety as antimicrobial and anticancer agents

İkhlass ABBAS, Sobhi GOMHA, Mahmoud ELAASSER, Mohammed BAUOMI