Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: a kinetic and thermodynamic study

In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of.H are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.

___

  • Abbas M, 2014, J IND ENG CHEM, V20, P745, DOI 10.1016/j.jiec.2013.06.030
  • Adebowale K.O., 2014, J ENCAPS ADSORP SCI, V4, P89
  • Bedelean H, 2009, CLAY MINER, V44, P487, DOI 10.1180/claymin.2009.044.4.487
  • Benguella B, 2009, CR CHIM, V12, P762, DOI 10.1016/j.crci.2008.11.008
  • Bensalah J., 2019, MEDITERR J CHEM, V9, P311
  • Bentahar Y, 2016, APPL CLAY SCI, V119, P385, DOI 10.1016/j.clay.2015.11.008
  • Chantawong V, 2003, WATER AIR SOIL POLL, V148, P111, DOI 10.1023/A:1025401927023
  • Chinoune K, 2016, APPL CLAY SCI, V123, P64, DOI 10.1016/j.clay.2016.01.006
  • Dincer AR, 2007, BIORESOURCE TECHNOL, V98, P834, DOI 10.1016/j.biortech.2006.03.009
  • Donmez G, 2002, PROCESS BIOCHEM, V38, P751, DOI 10.1016/S0032-9592(02)00204-2
  • El Maataoui Y, 2017, TURK J CHEM, V41, P514, DOI 10.3906/kim-1612-56
  • Eloussaief M, 2011, CHEM ENG J, V168, P1024, DOI 10.1016/j.cej.2011.01.077
  • Essaadaoui Y, 2018, MEDITERR J CHEM, V7, P145, DOI DOI 10.13171/MJC72/01808150945-ESSAADAOUI
  • Essaadaoui Y, 2018, DESALIN WATER TREAT, V111, P267, DOI 10.5004/dwt.2018.22191
  • Essebaai H, 2019, MEDITERRANEAN J CHEM, V9, P102, DOI [10.1016/j.cej.2011.01.077, DOI 10.1016/J.CEJ.2011.01.077]
  • Freundlich H, 1906, Z PHYS CHEM-STOCH VE, V57, P385
  • Fu FL, 2011, J ENVIRON MANAGE, V92, P407, DOI 10.1016/j.jenvman.2010.11.011
  • Gourouza M., 2013, REV CAMES SCI STRUCT, V1, P29
  • Gupta S, 2009, CHEM ENG J, V150, P352, DOI 10.1016/j.cej.2009.01.013
  • Gupta VK, 2009, CRIT REV ENV SCI TEC, V39, P783, DOI 10.1080/10643380801977610
  • Gupta VK, 2006, IND ENG CHEM RES, V45, P1446, DOI 10.1021/ie051111f
  • Gurses A, 2006, J HAZARD MATER, V131, P217, DOI 10.1016/j.jhazmat.2005.09.036
  • Hagui W, 2019, TURK J CHEM, V43, P435, DOI 10.3906/kim-1807-58
  • He H., 2000, CHINESE J GEOCHEM, V19, P105, DOI DOI 10.1007/BF03166865
  • Jiang MQ, 2010, DESALINATION, V252, P33, DOI 10.1016/j.desal.2009.11.005
  • Juang RS, 1997, ENVIRON TECHNOL, V18, P525, DOI 10.1080/09593331808616568
  • Kabdasli I, 2009, J HAZARD MATER, V165, P838, DOI 10.1016/j.jhazmat.2008.10.065
  • Kadiri L, 2019, MEDITERR J CHEM, V7, P478, DOI [10.13171/mjc7619012111lk, DOI 10.13171/MJC7619012111LK]
  • Kadiri L, 2018, MED J CHEM, V7, P204 .
  • Karagozoglu B, 2007, J HAZARD MATER, V147, P297, DOI 10.1016/j.jhazmat.2007.01.003
  • Kaya A, 2005, J HAZARD MATER, V125, P183, DOI 10.1016/j.jhazmat.2005.05.027
  • Lagergren S., 1898, K SVEN VETENSK HANDL, V24, P1, DOI DOI 10.1007/BF01501332
  • Langmuir I, 1918, J AM CHEM SOC, V40, P1361, DOI 10.1021/ja02242a004
  • Lebkiri I, 2019, MEDITERRANEAN J CHEM, V9, P337
  • Li G, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05507-3
  • Madejova J, 2017, DEV CLAY SCI, V8, P447, DOI 10.1016/B978-0-08-100355-8.00013-8
  • Mobarak M, 2018, J MOL LIQ, V259, P384, DOI 10.1016/j.molliq.2018.02.014
  • Obayomi KS, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02799
  • Ouaddari H, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2019.103268
  • Ouaddari H, 2018, SUSTAIN CHEM PHARM, V10, P1, DOI 10.1016/j.scp.2018.07.003
  • Ouallal H, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01616
  • Ouass A., 2017, JMES, V8, P3448 .
  • Ozdes D, 2011, J ENVIRON MANAGE, V92, P3082, DOI 10.1016/j.jenvman.2011.07.022
  • Qiu W, 2009, CHEM ENG J, V145, P483, DOI 10.1016/j.cej.2008.05.001
  • Rao RAK, 2016, ARAB J CHEM, V9, pS1233, DOI 10.1016/j.arabjc.2012.01.010
  • Reddi MRG, 2017, INT J BIOL MACROMOL, V104, P1578, DOI 10.1016/j.ijbiomac.2017.01.142
  • Sadki H., 2014, J MAT ENV SCI, V5, P2060
  • Saeed A, 2010, J HAZARD MATER, V179, P564, DOI 10.1016/j.jhazmat.2010.03.041
  • Temkin M, 1940, ACTA PHYSICOCHIM URS, V12, P327
  • Uddin MK, 2017, CHEM ENG J, V308, P438, DOI 10.1016/j.cej.2016.09.029
  • Yavuz O, 2003, WATER RES, V37, P948, DOI 10.1016/S0043-1354(02)00409-8
  • Zhang R, 2013, MAR POLLUT BULL, V74, P403, DOI 10.1016/j.marpolbul.2013.06.019