Proline-based organocatalyst-mediated asymmetric aldol reaction of acetone with substituted aromatic aldehydes: an experimental and theoretical study

This work involves a facile synthesis of three S -proline-based organocatalysts with C$_{2}$ symmetry and their effects in enantioselective aldol reaction of acetone with substituted aromatic aldehydes. Moderate enantioselectivities up to 61% ee were obtained depending on the nature of the substituents on the aryl ring. Computational calculations at HF/6-31 + G d level were employed to underline the enantioselectivity imposed by all the organocatalysts. Higher calculations at B3LYP/6-311 ++ G d,p scrf= solvent=dichloromethane //B3LYP/6-31 + G d levels of theory were also performed for the aldol reaction of acetone with benzaldehyde and 4-nitrobenzaldehyde catalyzed by 1. The computationaloutcomeswereconsistentwiththoseproducedbyexperimentalresultsandtheywerevaluabletoelucidate the mechanism for the observed stereoselectivity.

___

  • 1. Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angewandte Chemie International Edition 2015; 54: 3290-3327. doi: 10.1002/anie.201408487
  • 2. Noyori R. Asymmetric catalysis: science and opportunities (Nobel lecture). Angewandte Chemie International Edition 2002; 41: 2008-2022. doi: 10.1002/1521-3773(20020617)41:123.0.CO;2-4
  • 3. Knowles WS. Asymmetric hydrogenations (Nobel lecture). Angewandte Chemie International Edition 2002; 41: 1999-2007. doi: 10.1002/1521-3773(20020617)41:123.0.CO;2-8
  • 4. Sharpless KB. Searching for new reactivity (Nobel lecture). Angewandte Chemie International Edition 2002; 41:2024-2032. doi: 10.1002/1521-3773(20020617)41:123.0.CO;2-O
  • 5. Dalko PI, Moison L. In the golden age of organocatalysis. Angewandte Chemie International Edition 2004; 43: 5138-5175. doi: 10.1002/anie.200400650
  • 6. Seayad J, List B. Asymmetric organocatalysis. Organic & Biomolecular Chemistry 2005; 3: 719-924. doi: 10.1039/b415217b
  • 7. List B. Organocatalysis. Chemical Reviews 2007; 107:5413-5415. doi: 0.1021/cr078412e
  • 8. Gilmour R, Holland MC. Deconstructing covalent organocatalysis. Angewandte Chemie International Edition 2015; 54: 3862-3871. doi: 10.1002/anie.201409004
  • 9. Eder U, Sauer G, Wiechert R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angewandte Chemie International Edition 1971; 10: 496-497. doi: 10.1002/anie.197104961
  • 10. Hajos ZG, Parrish DR. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. Journal of Organic Chemistry 1974; 39: 1615-1621. doi: 10.1021/jo00925a003
  • 11. Marhrwald R. Modern Aldol Reactions. Weinheim, Germany: Wiley-VCH, 2004.
  • 12. List B. Proline-catalyzed asymmetric reactions .Tetrahedron 2002; 58: 5573-5590. doi: 10.1016/S0040-4020(02)00516- 1
  • 13. List B. Asymmetric aminocatalysis. Synlett 2001; 1675-1686. doi: 10.1055/s-2001-18074
  • 14. Alcaide B, Almendros P. The direct catalytic asymmetric cross-aldol reaction of aldehydes. Angewandte Chemie International Edition 2003, 42: 858-860. doi: 10.1002/anie.200390232
  • 15. List B. Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Accounts of Chemical Research 2004; 37: 548-557. doi: 10.1021/ar0300571
  • 16. Notz W, Tanaka F, Barbas CF. Enamine-based organocatalysis with proline and diamines:? the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels–Alder reactions. Accounts of Chemical Research 2004; 37: 580-591. doi: 10.1021/ar0300468
  • 17. Northrup AB, MacMillan DWC. The first direct and enantioselective cross-aldol reaction of aldehydes. Journal of the American Chemical Society 2002; 124: 6798-6799. doi: 10.1021/ja0262378
  • 18. Cordova A, Notz W, Barba CF. III. Proline-catalyzed one-step asymmetric synthesis of 5-hydroxy-(2E)-hexenal from acetaldehyde. Journal of Organic Chemistry 2002; 67: 301-303. doi: 10.1021/jo015881m
  • 19. Bøgevig A, Kumaragurubaran N, Jørgensen KA. Direct catalytic asymmetric aldol reactions of aldehydes. Chemical Communications 2002; 6: 620-621. doi: 10.1039/B200681B
  • 20. Pidathala C, Hoang L, Vignola N, List B. Direct catalytic asymmetric enolexo aldolizations. Angewandte Chemie International Edition 42: 2785-2788. doi: 10.1002/anie.200351266
  • 21. Northrup AB, Mangion IK, Hettche F, MacMillan DWC. Enantioselective organocatalytic direct aldol reactions of alpha-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angewandte Chemie International Edition 2004; 43: 2152-2154. doi: 10.1002/anie.200453716
  • 22. Casas J, Engqvist M, Ibrahem I, Kaynak B, Cordova A. Direct amino acid catalyzed asymmetric synthesis of polyketide sugars. Angewandte Chemie International Edition 2005; 44: 1343-1345. doi: 10.1002/anie.200461400
  • 23. Ooi T, Taniguchi M, Kameda M, Maruoka. Direct asymmetric aldol reactions of glycine Schiff base with aldehydes catalyzed by chiral quaternary ammonium salts. Angewandte Chemie International Edition 2002; 41: 4542-4544. doi: 10.1002/1521-3773(20021202)41:233.0.CO;2-3
  • 24. Hartikaa A, Arvidsson PI. Rational design of asymmetric organocatalysts—-increased reactivity and solvent scope with a tetrazolic acid. Tetrahedron Asymmetry 2004; 15: 1831-1834. doi: 10.1016/j.tetasy.2004.04.029
  • 25. Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H. Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angewandte Chemie International Edition 2004; 43:1983-1986. doi: 10.1002/anie.200352724
  • 26. Saito S, Yamamoto H. Design of acid–base catalysis for the asymmetric direct aldol reaction. Accounts of Chemical Research 2004; 37: 570-579. doi: 10.1021/ar030064p
  • 27. Berkessel A, Koch B, Lex J. Proline-derived N-sulfonylcarboxamides: readily available, highly enantioselective and versatile catalysts for direct aldol reactions. Advanced Synthesis & Catalysis 2004; 346: 1141-1146. doi: 10.1002/adsc.200404126
  • 28. Cobb AJA, Shaw DM, Longbottom DA, Gold JB, Ley SV. Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Organic & Biomolecular Chemistry 2005; 3: 84-96. doi: 10.1039/B414742A
  • 29. Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Catalytic enantioselective aldol reactions. Chemical Society Reviews 2018; 47: 4388-4480. doi: 10.1039/C7CS00824D
  • 30. Gryko D, Kowalczyk B, Zawadzki L. Bisprolinediamides with the binaphthyl backbone as organocatalysts for the direct asymmetric aldol reaction. Synlett 2006; 2006: 1059-1062 doi: 10.1055/s-2006-939701
  • 31. Xu XY, Tang Z, Wang YZ, Luo SW, Cun LF et al. Asymmetric organocatalytic direct aldol reactions of ketones with alpha-keto acids and their application to the synthesis of 2-hydroxy-gamma-butyrolactones. Journal of Organic Chemistry 2007; 72: 9905-9913. doi: 10.1021/jo701868t
  • 32. Orlandi M, Benaglia M, Raimondi L, Celentano G. 2-Aminoimidazolyl and 2-aminopyridyl (S)-prolinamides as versatile multifunctional organic catalysts for aldol, Michael, and Diels–Alder Reactions. European Journal of Organic Chemistry 2013; 2346-2354. doi: 10.1002/ejoc.201201643
  • 33. Kinsella M, Duggan PG, Lennon CM. Screening of simple N-aryl and N-heteroaryl pyrrolidine amide organocatalysts for the enantioselective aldol reaction of acetone with isatin. Tetrahedron Asymmetry 2011; 22: 1423-1433. doi: 10.1016/j.tetasy.2011.07.016
  • 34. Bhatnagar PK, Heerding DA, Hartmann M, Hiebl J, Kremminger P et al. PCT International Application 1997. WO9717958. A1.19970522. 1997.
  • 35. Kucherenko AS, Syutkin DE, Zlotin SG. Asymmetric aldol reaction in an ionic liquid-water system catalyzed by (S)- prolinamide derivatives. Russian Chemical Bulletin, International Edition 2008; 57: 591-594. doi: 10.1007/s11172- 008-0092-x
  • 36. Karakaplan M, Ak D, Colak M, Kocakaya SO, Hosgoren H et al. Synthesis of new diaza-18-crown-6 ethers derived from trans-(R,R)-1,2-diaminocyclohexane and investigation of their enantiomeric discrimination ability with amino acid ester salts. Tetrahedron 2013; 69: 349-358. doi: 10.1016/j.tet.2012.10.020
  • 37. Xu Z, Daka P, Budik I, Wang H, Bai FQ et al. Enamine–metal Lewis acid bifunctional catalysis: application to direct asymmetric aldol reaction of ketones. European Journal of Organic Chemistry 2009; 2009: 4581-4585. doi: 10.1002/ejoc.200900678
  • 38. Lam YH, Grayson MN, Holland MC, Simon A, Houk KN. Theory and modeling of asymmetric catalytic reactions. Accounts of Chemical Research 2016; 49: 750-762. doi: 10.1021/acs.accounts.6b00006
  • 39. Case DA, Darden TA, Cheatham TE 3rd, Simmerling CL, Wang J et al. AMBER 9. San Francisco, CA, USA: University of California, 2006.
  • 40. Dennington R, Keith T, Millam J. GaussView, Version 3.09. Shawnee Mission, KS, USA: Semichem, 2004.
  • 41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 03, Revision C.02. Wallingford, CT, USA; Gaussian, Inc., 2004.
  • 42. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society 1985; 107: 3902-3909. doi: 10.1021/ja00299a024
  • 43. Jakalian A, Bush BL, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. Journal of Computational Chemistry 2000; 21: 132-146. doi: 10.1002/(SICI)1096-987X(20000130)21:23.0.CO;2-P
  • 44. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 2002; 23: 1623-1641. doi: 10.1002/jcc.10128
  • 45. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. Journal of Computational Chemistry 2004; 25: 1157-1174. doi: 10.1002/jcc.20145
  • 46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004; 25: 1605-1612. doi: 10.1002/jcc.20084
  • 47. Acetti D, Brenna E, Fuganti C, Gatti F, Serra S. Baker’s yeast reduction of beta-hydroxy ketones. European Journal of Organic Chemistry 2010; 2010: 142-151. doi: 10.1002/ejoc.200901006
  • 48. List B, Lerner RA Barbas CF. Proline-catalyzed direct asymmetric aldol reactions. Journal of the American Chemical Society 2000; 122: 2395-2396. doi: 10.1021/ja994280y
  • 49. Rankin KN, Gauld JW, Boyd RJ. Density functional study of the proline-catalyzed direct aldol reaction. Journal of Physical Chemistry A 2002; 106: 5155-5159. doi: 10.1021/jp020079p
  • 50. Bahmanyar S, Houk KN, Martin HJ, List B. Quantum mechanical predictions of the stereoselectivities of prolinecatalyzed asymmetric intermolecular aldol reactions. Journal of the American Chemical Society 2003; 125: 2475- 2479. doi: 10.1021/ja028812d
  • 51. Discovery Studio Visualizer Software, Version 4.0. 2012 (http://www.accelrys.com)