Process optimization and mechanism study of acid red G degradation by electro-Fenton-Feox process as an in situ generation of H2O2

Dye-contaminated wastewaters are industrial wastewaters that are difficult to treat using traditional biochemical and physicochemical methods. In the present work, the acid red G was removed as a model pollutant by the electro-Fenton process for the first time. The anode and cathode used by the electro-Fenton process were iron plate and graphite felt, respectively. It was concluded that under the optimal conditions of current density = 20 mA cm(-2), pH = 3 and initial Na2SO4 concentration = 0.2 M, the removal rate of acid red G (ARG) with an initial concentration of 300 mg L-1 could reach 94.05% after 80 min of electrolysis. This reveals that the electro-Fenton-Feox process used in this work has an excellent removal efficiency on acid red G. The required reagents (Fe2+ and H2O2) were generated by the electrode reaction, while the optimal generation conditions and mechanism of center dot OH, H2O2, and Fe2+ were investigated. By testing center dot OH, H2O2, and Fe2+ agents at different pH and current densities, it was revealed that the electro-Fenton reaction was most efficient when the current density was 20 mA cm(-2), and the pH was 3. Moreover, the removal rate of ARG is consistent with first-order reaction kinetics.

___

  • Acisli O, 2017, ULTRASON SONOCHEM, V35, P210, DOI 10.1016/j.ultsonch.2016.09.020
  • Arellano M, 2020, SEP PURIF TECHNOL, V233, DOI 10.1016/j.seppur.2019.115990
  • Bello MM, 2019, PROCESS SAF ENVIRON, V126, P119, DOI 10.1016/j.psep.2019.03.028
  • Cao PK, 2020, J HAZARD MATER, V382, DOI 10.1016/j.jhazmat.2019.121102
  • Cao ZQ, 2018, CHEM ENG J, V337, P256, DOI 10.1016/j.cej.2017.12.104
  • Contreras MBC, 2019, CHEMOSPHERE, V237, DOI 10.1016/j.chemosphere.2019.124447
  • Casado J, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2018.102823
  • Changotra R, 2019, J PHOTOCH PHOTOBIO A, V376, P175, DOI 10.1016/j.jphotochem.2019.02.029
  • Chen S, 2019, SCI TOTAL ENVIRON, V670, P921, DOI 10.1016/j.scitotenv.2019.03.086
  • Chen YS, 2019, WATER RES, V152, P181, DOI [10.1016/j.watres.2018.12.035, 10.2495/BIM190161]
  • Choe YJ, 2021, CATAL TODAY, V359, P16, DOI 10.1016/j.cattod.2019.06.062
  • Colades JI, 2020, J ELECTROANAL CHEM, V856, DOI 10.1016/j.jelechem.2019.113639
  • Dang XG, 2019, INT J BIOL MACROMOL, V121, P113, DOI 10.1016/j.ijbiomac.2018.10.012
  • Das R, 2017, ULTRASON SONOCHEM, V37, P600, DOI 10.1016/j.ultsonch.2017.02.022
  • Diez AM, 2020, SEP PURIF TECHNOL, V230, DOI 10.1016/j.seppur.2019.115880
  • Emami F, 2010, DESALINATION, V257, P124, DOI 10.1016/j.desal.2010.02.035
  • Feng JT, 2014, SYNTHETIC MET, V191, P66, DOI 10.1016/j.synthmet.2014.02.013
  • Gao Y, 2020, ELECTROCHIM ACTA, V330, DOI 10.1016/j.electacta.2019.135206
  • Garcia-Segura S, 2015, J HAZARD MATER, V283, P551, DOI 10.1016/j.jhazmat.2014.10.003
  • Khataee A, 2016, J TAIWAN INST CHEM E, V58, P366, DOI 10.1016/j.jtice.2015.06.015
  • Kourdali S, 2018, J ENVIRON MANAGE, V226, P106, DOI 10.1016/j.jenvman.2018.08.038
  • Kubo D, 2018, J CLEAN PROD, V203, P685, DOI 10.1016/j.jclepro.2018.08.231
  • Lei JN, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103773
  • Murrieta MF, 2020, CHEMOSPHERE, V246, DOI 10.1016/j.chemosphere.2019.125697
  • Panizza M, 2009, WATER RES, V43, P339, DOI 10.1016/j.watres.2008.10.028
  • Pignatello JJ, 1999, ENVIRON SCI TECHNOL, V33, P1832, DOI 10.1021/es980969b
  • Rutely CBC, 2018, RSC ADV, V8, P5321, DOI 10.1039/c7ra13209c
  • Salazar R, 2012, WATER AIR SOIL POLL, V223, P4199, DOI 10.1007/s11270-012-1184-7
  • Solano AMS, 2015, APPL CATAL B-ENVIRON, V168, P559, DOI 10.1016/j.apcatb.2015.01.019
  • SELLERS RM, 1980, ANALYST, V105, P950, DOI 10.1039/an9800500950
  • Sennaoui A, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2019.103033
  • Shemer H, 2006, CHEMOSPHERE, V63, P269, DOI 10.1016/j.chemosphere.2005.07.029
  • Shoorangiz M, 2019, PROCESS SAF ENVIRON, V132, P340, DOI 10.1016/j.psep.2019.10.011
  • Sopaj F, 2020, CHEM ENG J, V384, DOI 10.1016/j.cej.2019.123249
  • Stupar SL, 2020, J WATER PROCESS ENG, V36, DOI 10.1016/j.jwpe.2020.101394
  • Tong DS, 2012, APPL CLAY SCI, V70, P1, DOI 10.1016/j.clay.2012.08.001
  • Wang T, 2016, CHEM ENG J, V295, P403, DOI 10.1016/j.cej.2016.03.016
  • Wang YR, 2013, CHEM ENG J, V215, P643, DOI 10.1016/j.cej.2012.11.042
  • Yang HJ, 2018, CHEMOSPHERE, V206, P439, DOI 10.1016/j.chemosphere.2018.05.027
  • Zhang GK, 2006, CHEM ENG J, V123, P59, DOI 10.1016/j.cej.2006.06.021
  • Zhao K, 2019, SEP PURIF TECHNOL, V224, P534, DOI 10.1016/j.seppur.2019.05.058
  • Zhou MH, 2007, SEP PURIF TECHNOL, V57, P380, DOI 10.1016/j.seppur.2007.04.021
  • Zou RS, 2020, ENVIRON INT, V134, DOI 10.1016/j.envint.2019.105352
  • Zou X, 2016, J MOL CATAL A-CHEM, V411, P364, DOI 10.1016/j.molcata.2015.11.009