One-pot synthesis of VOx /Al2 O3 as efficient catalysts for propane dehydrogenation

Vanadium oxides, as highly efficiently catalysts, are widely applied in various catalytic reactions, such as the dehydrogenation of light alkanes and epoxidation of alkenes. In this paper, a series of VOx /Al2O3 catalysts were fabricated by the 1-pot method for catalytic propane dehydrogenation. The results indicated that the VOx /Al2O3 catalysts with loading of 10 wt.% vanadium exhibited optimized catalytic performance. The as-prepared catalysts were characterized by N2 adsorption-desorption, XRD, TEM, H2 -TPR, and XPS to explore the texture properties, morphology, and electronic environment of vanadium. In addition, several vanadium catalysts were also prepared by the incipient wetness impregnation (IWI) method to compare their catalytic performance with the 1-pot synthesized catalysts. The catalysts synthesized by the 1-pot method exhibited higher selectivity of propylene and longer catalyst lifetime at high propane conversion when compared to the counterpart synthesized by the IWI method.

___

  • 1. Xiong C, Chen S, Yang P, Zha S, Zhao ZJ et al. Structure-performance relationships for propane dehydrogenation over aluminum supported vanadium oxide. ACS Catalysis 2019; 9 (7): 5816-5827. doi: 10.1021/acscatal.8b04701
  • 2. Hu P, Lang WZ, Yan X, Chen XF, Guo YJ. Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction. Applied Catalysis A: General 2018; 553: 65-73. doi: 10.1016/j.apcata.2018.01.014
  • 3. Liu Q, Yang Z, Luo M, Zhao Z, Wang J et al. Vanadium-containing dendritic mesoporous silica nanoparticles: multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene. Microporous and Mesoporous Materials 2019; 282: 133-145. doi: 10.1016/j.micromeso.2019.03.036
  • 4. Yang QQ, Hu P, Xiu NY, Lang WZ, Guo YJ. VOx /γ -Al 2 O3 catalysts for propane dehydrogenation prepared by “impregnation-solid phase reaction” method with aluminum hydroxide as support precursor. ChemistrySelect 2018; 3 (35): 10049-10055. doi: 10.1002/slct.201802070
  • 5. Zhao ZJ, Wu T, Xiong C, Sun G, Mu R et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx /γ -Al 2 O3 catalysts with improved stability. Angewandte Chemie International Edition 2018; 57 (23): 6791- 6795. doi: 10.1002/anie.201800123
  • 6. Liu G, Zeng L, Zhao ZJ, Tian H, Wu T et al. Platinum-modified ZnO/Al 2 O3 for propane dehydrogenation: minimized platinum usage and improved catalytic stability. ACS Catalysis 2016; 6 (4): 2158-2162. doi: 10.1021/acscatal.5b02878
  • 7. Bakare IA, Adamu S, Qamaruddin M, Al-Bogami SA, Al-Ghamdi S et al. Oxidative dehydrogenation of propane to propylene over VOx on mixed θ -Al 2 O3 /alkaline earth metal oxides supports. Industrial & Engineering Chemistry Research 2019; 58 (25): 10785-10792. doi: 10.1021/acs.iecr.9b01144
  • 8. Mitran G, Ahmed R, Iro E, Hajimirzaee S, Hodgson S et al. Propane oxidative dehydrogenation over VOx /SBA-15 catalysts. Catalysis Today 2018; 306: 260-267. doi: 10.1016/j.cattod.2016.12.014
  • 9. Barman S, Maity N, Bhatte K, Ould-Chikh S, Dachwald O et al. Single-site VOx moieties generated on silica by surface organometallic chemistry: a way to enhance the catalytic activity in the oxidative dehydrogenation of propane. ACS Catalysis 2016; 6 (9): 5908-5921. doi: 10.1021/acscatal.6b01263
  • 10. Ovsitser O, Schomaecker R, Kondratenko EV, Wolfram T, Trunschke A. Highly selective and stable propane dehydrogenation to propane over dispersed VOx -species under oxygen-free and oxygen-lean conditions. Catalysis Today 2012; 192 (1): 16-19. doi: 10.1016/j.cattod.2012.01.034
  • 11. Sokolov S, Stoyanova M, Rodemerck U, Linke D, Kondratenko EV. Comparative study of propane dehydrogenation over V-, Cr-, and Pt-based catalysts: Time on-stream behavior and origins of deactivation. Journal of Catalysis 2012; 293: 67-75. doi: 10.1016/j.jcat.2012.06.005
  • 12. Bai P, Ma Z, Li T, Tian Y, Zhang Z et al. Relationship between surface chemistry and catalytic performance of mesoporous gamma-Al 2 O3 supported VOx catalyst in catalytic dehydrogenation of propane. ACS Applied Materials & Interfaces 2016; 8 (39): 25979-25990. doi: 10.1021/acsami.6b07779
  • 13. Yang H, Lu Q, Gao F, Shi Q, Yan Y et al. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels. Advanced Functional Materials 2005; 15 (8): 1377-1384. doi: 10.1002/adfm.200500026
  • 14. Sun Q, Wang N, Bing Q, Si R, Liu J et al. Subnanometric hybrid Pd-M(OH) 2 , M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017; 3 (3): 477-493. doi: 10.1016/j.chempr.2017.07.001
  • 15. Liu L, Díaz U, Arenal R, Agostini G, Concepción P et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials 2017; 16 (1): 132. doi: 10.1038/nmat4757
  • 16. Farmer JA, Campbell CT. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010; 329 (5994): 933-936. doi: 10.1126/science.1191778
  • 17. Wang Y, Wang W, Xue F, Cheng Y, Liu K et al. One-pot synthesis of Pd@ Pt 3 Ni core-shell nanobranches with ultrathin Pt 3 Ni{111} skins for efficient ethanol electrooxidation. Chemical Communications 2018; 54 (41): 5185-5188. doi: 10.1039/C8CC02816H
  • 18. Xia BY, Wu HB, Li N, Yan Y, Lou XW et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angewandte Chemie International Edition 2015; 54 (12): 3797-3801. doi: 10.1002/anie.201411544
  • 19. Hou C, Wang J, Du W, Wang J, Du Y et al. One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. Journal of Materials Chemistry A 2019; 7 (22): 13460-13472. doi: 10.1039/C9TA03551F
  • 20. Ji L, Yan P, Zhu C, Ma C, Wu W et al. One-pot synthesis of porous 1T-phase MoS 2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental 2019; 251: 87-93. doi: 10.1016/j.apcatb.2019.03.053
  • 21. Hu P, Lang WZ, Yan X, Chu LF, Guo YJ. Influence of gelation and calcination temperature on the structureperformance of porous VOx -SiO2 solids in non-oxidative propane dehydrogenation. Journal of Catalysis 2018; 358: 108-117. doi: 10.1016/j.jcat.2017.12.004
  • 22. Khalily MA, Eren H, Akbayrak S, Susapto HH, Biyikli N et al. Facile synthesis of three-dimensional Pt-TiO2 nanonetworks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angewandte Chemie International Edition 2016; 55 (40): 12257-12261. doi: 10.1002/anie.201605577
  • 23. Filez M, Redekop E, Poelman H, Galvita V, Meledina M et al. One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation. Catalysis Science & Technology 2016; 6 (6): 1863- 1869. doi: 10.1039/C5CY01274K
  • 24. Zhou X, Zou Y, Ma J, Cheng X, Li Y et al. Cementing mesoporous ZnO with silica for controllable and switchable gas sensing selectivity. Chemistry of Materials 2019; 31 (19): 8112-8120. doi: 10.1021/acs.chemmater.9b02844
  • 25. Soler-Illia GDA, Louis A, Sanchez C. Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chemistry of Materials 2002; 14 (2): 750-759. doi: 10.1021/cm011217a
  • 26. Brinker CJ, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy. Advanced Materials 1999; 11 (7): 579-585. doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  • 27. Zhu H, Anjum DH, Wang Q, Abou-Hamad E, Emsley L et al. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. Journal of Catalysis 2014; 320: 52-62. doi: 10.1016/j.jcat.2014.09.013
  • 28. Jang EJ, Lee J, Jeong HY, Kwak JH. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. Applied Catalysis A: General 2019; 572: 1-8. doi: 10.1016/j.apcata.2018.12.024
  • 29. Sattler JJ, Mens AM, Weckhuysen BM. Real-time quantitative operando Raman spectroscopy of a CrOx /Al 2 O3 propane dehydrogenation catalyst in a pilot-scale reactor. ChemCatChem 2014; 6 (11): 3139-3145. doi: 10.1002/cctc.201402649
  • 30. Ma B, Li Y, Liu G, Liang D. Preparation and properties of Al 2 O3 -MgAl 2 O4 ceramic foams. Ceramics International 2015; 41 (2): 3237-3244. doi: 10.1016/j.ceramint.2014.11.013
  • 31. Bulushev DA, Rainone F, Kiwi-Minsker L, Renken A. Influence of potassium doping on the formation of vanadia species in V/Ti oxide catalysts. Langmuir 2001; 17 (17): 5276-5282. doi: 10.1021/la010077g
  • 32. Berndt H, Martin A, Brückner A, Schreier E, Müller D et al. Structure and catalytic properties of VOx /MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis 2000; 191 (2): 384-400. doi: 10.1006/jcat.1999.2786
  • 33. Kondratenko E, Baerns M. Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2 O - The role of vanadia distribution and oxidant activation. Applied Catalysis A: General 2001; 222 (1-2): 133-143. doi: 10.1016/S0926-860X(01)00836-5
  • 34. Fan K, Chen H, Ji Y, Huang H, Claesson PM et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications 2016; 7: 11981. doi: 10.1038/ncomms11981
  • 35. Xing X, Liu R, Cao K, Kaiser U, Zhang G et al. Manganese vanadium oxide-N-doped reduced graphene oxide composites as oxygen reduction and oxygen evolution electrocatalysts. ACS Applied Materials & Interfaces 2018; 10 (51): 44511-44517. doi: 10.1021/acsami.8b16578
  • 36. Xiong C, Chen S, Yang P, Zha S, Zhao ZJ et al. Structure-performance relationships for propane dehydrogenation over aluminum supported vanadium oxide. ACS Catalysis 2019; 9 (7): 5816-5827. doi: 10.1021/acscatal.8b04701
  • 37. Ureña-Begara F, Crunteanu A, Raskin JP. Raman and XPS characterization of vanadium oxide thin films with temperature. Applied Surface Science 2017; 403: 717-727. doi: 10.1016/j.apsusc.2017.01.160
  • 38. Iatsunskyi I, Kempiński M, Jancelewicz M, Załęski K, Jurga S et al. Structural and XPS characterization of ALD Al 2 O3 coated porous silicon. Vacuum 2015; 113: 52-58. doi: 10.1016/j.vacuum.2014.12.015
  • 39. Kondratenko EV, Cherian M, Baerns M, Su D, Schlögl R et al. Oxidative dehydrogenation of propane over V/MCM-41 catalysts: Comparison of O2 and N2 O as oxidants. Journal of Catalysis 2005; 234 (1): 131-142. doi: 10.1016/j.jcat.2005.05.025