Novel BODIPY-bridged cyclotriphosphazenes

Three new 2-component unsubstituted (4P), diiodo- (5P), and dibromo- (6P) distyryl-BODIPY-bridged cyclotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems were characterized by 1H, 13C, and 31P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs (4-6) and BODIPY-cyclotriphosphazene dyads (4P-6P) were studied by UV-Vis absorption and fluorescence emission spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4 P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes (5P and 6P) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.

___

  • 1. Allen CW. Regiochemical and stereochemical control in substitution-reactions of cyclophosphazenes. Chemical Reviews 1991; 91 (2): 119-135. doi: 10.1021/cr00002a002
  • 2. Ozturk E, Okumus A, Kilic Z, Kilic A, Kayalak H et al. Phosphorus-nitrogen compounds. Part 44. The syntheses of N,N-spiro bridged cyclotriphosphazene derivatives with (4-fluorobenzyl) pendant arms: structural and stereogenic properties, DNA interactions, antimicrobial and cytotoxic activities. Inorganica Chimica Acta 2019; 486: 172-184. doi: 10.1016/j.ica.2018.10.028
  • 3. Asmafiliz N, Kilic Z, Civan M, Avci O, Gonder LY et al. Phosphorus-nitrogen compounds. Part 36. Syntheses, Langmuir-Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New Journal of Chemistry 2016; 40 (11): 9609-9626. doi: 10.1039/c6nj02052f
  • 4. Akbas H, Karadag A, Destegul A, Cakirlar C, Yerli Y et al. Synthesis, and spectroscopic, thermal and dielectric properties of phosphazene based ionic liquids: OFET application and tribological behavior. New Journal of Chemistry 2019; 43 (5): 2098-2110. doi: 10.1039/c8nj04948c
  • 5. Allcock HR. Chemistry and Applications of Polyphosphazenes. Hoboken, NJ, USA: Wiley-Interscience, 2003.
  • 6. Okutan E, Eserci H, Senkuytu E. New perylenebisimide decorated cyclotriphosphazene heavy atom free conjugate as singlet oxygen generator. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 222: 117232. doi: 10.1016/j.saa.2019.117232
  • 7. Caminade AM, Hameau A, Majoral JP. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions 2016; 45 (5): 1810-1822. doi: 10.1039/c5dt03047a
  • 8. Chandrasekhar V, Nagendran S. Phosphazenes as scaffolds for the construction of multi-site coordination ligands. Chemical Society Reviews 2001; 30 (3): 193-203. doi: 10.1039/b004872k
  • 9. Rao MR, Gayatri G, Kumar A, Sastry GN, Ravikanth M. Cyclotriphosphazene ring as a platform for multiporphyrin assemblies. Chemistry - A European Journal 2009; 15 (14): 3488-3496. doi: 10.1002/chem.200802413
  • 10. Van der Huizen AA, Van de Grampel JC, Rusch JW, Wilting T, Van Bolhuis F et al. Aziridinolysis patterns of (NPCl2)3 and (NPCl2)4; crystal structures of trans-N3P3(NC2H4)2Cl4 and 2,trans-4-N4P4(NC2H4)2Cl6. Journal of the Chemical Society, Dalton Transactions 1986; (7): 1317-1327. doi: 10.1039/DT9860001317
  • 11. Van der Huizen AA, Wilting T, Van de Grampel JC, Lelieveld P, Van der Meer-Kalverkamp A et al. Isomerdependent cytostatic activity of bis(1-aziridinyl)cyclophosphazenes. Journal of Medicinal Chemistry 1986; 29 (8): 1341-1345. doi: 10.1021/jm00158a003
  • 12. Ibisoglu H, Besli S, Yuksel F, Un I, Kilic A. Investigation of nucleophilic substitution pathway for the reactions of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes. Inorganica Chimica Acta 2014; 409: 216-226. doi: 10.1016/j.ica.2013.09.030
  • 13. Uslu A, Ozcan E, Dural S, Yuksel F. Synthesis and characterization of cyclotriphosphazene derivatives bearing azole groups. Polyhedron 2016; 117: 394-403. doi: 10.1016/j.poly.2016.06.009
  • 14. Besli S, Coles SJ, Davies DB, Kilic A, Okutan E et al. A cis-directing effect towards diols by an exocyclic P-NHR moiety in cyclotriphosphazenes. Inorganic Chemistry Communications 2009; 12 (8): 773-777. doi: 10.1016/j.inoche.2009.06.014
  • 15. Qian YC, Huang XJ, Xu ZK. Synthesis of polyphosphazene derivatives via thiol-ene click reactions in an aqueous medium. Macromolecular Chemistry and Physics 2015; 216 (6): 671-677. doi: 10.1002/macp.201400545
  • 16. Sarikaya SY, Yesilot S, Kilic A, Okutan E. NIR BODIPY-cyclotriphosphazene-fullerene assemblies: photophyisical properties and photosensitized generation of singlet oxygen. Dyes and Pigments 2019; 162: 734-740. doi: 10.1016/j.dyepig.2018.11.011
  • 17. Senkuytu E, Ecik ET. Octa-BODIPY derivative dendrimeric cyclotetraphosphazenes; photophysical properties and fluorescent chemosensor for Co2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017; 173: 863-870. doi: 10.1016/j.saa.2016.10.052
  • 18. Sarikaya SY, Yesilot S, Kilic A, Okutan E. Novel BODIPY-cyclotriphosphazene-fullerene triads: synthesis, characterization and singlet oxygen generation efficiency. Dyes and Pigments 2018; 153: 26-34. doi: 10.1016/j.dyepig.2018.02.001
  • 19. Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews 2007; 107 (11): 4891-4932. doi: 10.1021/cr078381n
  • 20. Huang L, Yu XR, Wu WH, Zhao JZ. Styryl BODIPY-C-60 dyads as efficient heavy-atom-free organic triplet photosensitizers. Organic Letters 2012; 14 (10): 2594-2597. doi: 10.1021/ol3008843
  • 21. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY et al. BODIPY dyes in photodynamic therapy. Chemical Society Reviews 2013; 42 (1): 77-88. doi: 10.1039/c2cs35216h
  • 22. Zhao JZ, Wu WH, Sun JF, Guo S. Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews 2013; 42 (12): 5323-5351. doi: 10.1039/c3cs35531d
  • 23. Senkuytu E, Cebesoy Z, Ciftci GY, Ecik ET. Study on the synthesis, photophysical properties and singlet oxygen generation behavior of BODIPY-functionalized cyclotriphosphazenes. Journal of Fluorescence 2017; 27 (2): 595- 601. doi: 10.1007/s10895-016-1987-9
  • 24. Ecik ET, Senkuytu E, Cebesoy Z, Ciftci GY. BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. RSC Advances 2016; 6 (53): 47600-47606. doi: 10.1039/c6ra07171f
  • 25. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. Journal of Chemical Education 1999; 76 (9): 1260-1264. doi: 10.1021/ed076p1260
  • 26. Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure and Applied Chemistry 2011; 83 (12): 2213-2228. doi: 10.1351/Pac-Rep-10-09-31
  • 27. Okutan E, Tumay SO, Yesilot S. Colorimetric fluorescent sensors for hemoglobin based on BODIPY dyes. Journal of Fluorescence 2016; 26 (6): 2333-2343. doi: 10.1007/s10895-016-1929-6
  • 28. Song F, Zhang H, Wang DG, Chen T, Yang S et al. Imine-linked porous organic polymers showing mesoporous microspheres architectures with tunable surface roughness. Journal of Polymer Science Part A: Polymer Chemistry 2018; 56 (3): 319-327. doi: 10.1002/pola.28902
  • 29. Gao HC, Gao Y, Wang C, Hu DH, Xie ZQ et al. Anomalous effect of intramolecular charge transfer on the light emitting properties of BODIPY. ACS Applied Materials & Interfaces 2018; 10 (17): 14956-14965. doi: 10.1021/acsami.7b13444
  • 30. Zhao JZ, Xu KJ, Yang WB, Wang ZJ, Zhong FF. The triplet excited state of BODIPY: formation, modulation and application. Chemical Society Reviews 2015; 44 (24): 8904-8939. doi: 10.1039/c5cs00364d
  • 31. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. Highly efficient and photostable photosensitizer based on BODIPY chromophore. Journal of the American Chemical Society 2005; 127 (35): 12162-12163. doi: 10.1021/ja0528533
  • 32. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews 2002; 233: 351-371. doi: 10.1016/S0010-8545(02)00034-6
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ranolazine-functionalized CuO NPs: efficient homogeneous and heterogeneous catalysts for reduction of 4-nitrophenol

Jan NIISAR, Sirajuddin KHAN, Syed Tufail Hussain SHERAZI, Gul Naz LAGHARI BALOCH, Sarfaraz Ahmed MAHESAR

Zahra HOSSEINZADEH, Nima RAZZAGHI-ASL, Ali RAMAZANI, Hamideh AGHAHOSSEINI, Ali RAMAZANI

Novel BODIPY-bridged cyclotriphosphazenes

Elif OKUTAN, Hande ESERCİ, Ezel ÖZTÜRK

Synthesis, optical, and structural properties of bisphenol-bridged aromatic cyclic phosphazenes

Burcu TOPALOĞLU AKSOY, Süreyya Oğuz TÜMAY, Bünyemin ÇOŞUT, Serkan YEŞİLOT, Ahmet ŞENOCAK

Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units

Gönül YENİLMEZ ÇİFTÇİ, Esra TANRIVERDİ EÇİK, Eda ERDEMİR, Hanife İBİŞOĞLU, Gizem DEMİR, Fatma YÜKSEL

Laila SADALLAH, Aicha BOUKHRISS, Hassan HANNACHE, Said GMOUH

Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples

Aysel BAŞOĞLU, Miraç OCAK, Sevgi KOLAYLI, SALİHA DİNÇ, Meryem KARA, Ümmühan OCAK, Abidin GÜMRÜKÇÜOĞLU

Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes

Gönül YENİLMEZ ÇİFTÇİ, Elif ŞENKUYTU, Sergen YILMAZ, Nagihan BAYIK, Esra Nur KAYA, Mustafa BULUT, Mahmut DURMUŞ

One-pot synthesis of VOx /Al2O3 as efficient catalysts for propane dehydrogenation

Zhihao DING, Liancheng BING, Kai LU, Guangjian WANG, Hao XU

Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties

Ceylan MUTLU BALCI, Serap BEŞLİ, Süreyya Oğuz TÜMAY, Serkan YEŞİLOT, Semih DOĞAN