MWCNT/nano-ZrO2 as a new solid phase extractor: its synthesis, characterization, and application to atomic absorption spectrometric determination of lead

Nanoscale ZrO2 was synthesized on a multiwall carbon nanotube (MWCNT) and designed as a new solid phase extractor for metal ion preconcentration. The characterization of the synthesized material was achieved by transmission electron microscope (TEM) and X-ray diffraction (XRD). Then the new nanoscale material was applied to preconcentration of lead(II) from various matrices. Different experimental factors including pH of the sample solution, sample volume, flow rate of the sample solution, and volume and concentration of the eluent for the preconcentration step were examined. The effect of interfering ions on the recovery of the lead(II) was also investigated. The recovery of lead(II) under the optimum conditions was found to be 104 \pm 2% at 95% confidence level. The preconcentration factor was 30 when 150 mL of sample solution and 5 mL of eluent were used. The analytical detection limit for Pb(II) was 0.80 m g L-1 after preconcentration. The adsorption capacity of the new nanosorbent was 115 mg g-1. The accuracy of the method was confirmed by analyzing standard reference materials (Silty Clay 7003). The results demonstrated good agreement with the certified values. The method was applied for the determination of lead in tap water and clay samples.

MWCNT/nano-ZrO2 as a new solid phase extractor: its synthesis, characterization, and application to atomic absorption spectrometric determination of lead

Nanoscale ZrO2 was synthesized on a multiwall carbon nanotube (MWCNT) and designed as a new solid phase extractor for metal ion preconcentration. The characterization of the synthesized material was achieved by transmission electron microscope (TEM) and X-ray diffraction (XRD). Then the new nanoscale material was applied to preconcentration of lead(II) from various matrices. Different experimental factors including pH of the sample solution, sample volume, flow rate of the sample solution, and volume and concentration of the eluent for the preconcentration step were examined. The effect of interfering ions on the recovery of the lead(II) was also investigated. The recovery of lead(II) under the optimum conditions was found to be 104 \pm 2% at 95% confidence level. The preconcentration factor was 30 when 150 mL of sample solution and 5 mL of eluent were used. The analytical detection limit for Pb(II) was 0.80 m g L-1 after preconcentration. The adsorption capacity of the new nanosorbent was 115 mg g-1. The accuracy of the method was confirmed by analyzing standard reference materials (Silty Clay 7003). The results demonstrated good agreement with the certified values. The method was applied for the determination of lead in tap water and clay samples.

___

  • Praveen, R. S.; Naidu, G. R. K.; Rao, T. P. Anal. Chim. Acta 2007, 600, 205-213.
  • Hodgson, E. A Textbook of Modern Toxicology, 3rd ed., Wiley-Interscience, 2004, 51.
  • FAO/WHO, Evaluation of Certain Food Additives and Contaminants, Technical Report Series 837, World Health Organization, Geneva, Switzerland, 1993.
  • Llobet, J. M.; Falc´o, G.; Casas, C.; Teixid´o, A.; Domingo, J. L. J. Agric. Food Chem. 2003, 51, 838-842.
  • Minczewski, J.; Chwastowska, J.; Dybezynski, R. Separation and Preconcentration Methods in Inorganic Trace Analysis, Ellis Horwood, New York, 1982.
  • Yal¸cınkaya, ¨O.; Kalfa, O. M.; T¨urker, A. R. Turk. J. Chem. 2010, 34, 207-217.
  • Kaya, G.; Yaman, M. Talanta 2008, 75, 1127-1133. 8. Kocurova, L.; Balogh, I. S.; Sandrejova, J.; Andruch, V. Microchem. J. 2012 102, 11-17.
  • Miladenova, E.; Dakova, I.; Karadjova, I.; Karadjov, M. Microchem. J. 2012, 101, 59-64.
  • Duran, C.; S¸ent¨urk, H. B.; El¸ci, L.; Soylak, M.; T¨ufek¸ci, M. J. Hazard. Mater. 2009, 162, 292-299.
  • Pesavento, M.; Sturini, M.; D’Agostino, G.; R. Biesuz J. Chrom. A 2010, 1217, 1218.
  • Islam, A.; Laskar, M. A.; Ahmad, A. Talanta 2010, 81, 1772-1780.
  • Hossein, M.; Dalali, N.; Karimi, A.; Dastanra, K. Turk. J. Chem. 2010, 34, 805-814.
  • Dalman, O.; Bulut, V.N.; De˘girmencio˘glu, ˙I.; Tufek¸ci, M. Turk. J. Chem. 2007, 31, 631-646.
  • Ghasemi, J. B.; Zolfonoun, E. Talanta 2010, 80, 1191-1197.
  • Hajiaghababaei, L.; Badiei, A.; Ganjali, M. R.; Heydari, S.; Khaniani, Y.; Ziarani, G. M. Desalination 2011, 266, 187.
  • Kalfa, O. M.; Yal¸cınkaya, ¨O.; T¨urker, A. R. J. Hazard. Mater. 2009, 166, 455-461.
  • Kalfa, O. M.; Yal¸cınkaya, ¨O.; T¨urker, A. R. Inorganic Mater. 2009, 45, 988-992.
  • Baysal, A.; Akman, S.; Demir, S.; Kahraman, M. Microchem. J. 2011, 99, 421-424.
  • P´erez, L. M. R.; Herrera, A. V. H.; Borges, J. H.; Delgado, M. ´A. R. J. Chromatogr. A 2010, 1217, 2618-2641.
  • Erdo˘gan, H.; Yal¸cınkaya, ¨O.; T¨urker, A. R. Desalination 2011, 280, 391-396.
  • Tajik, S.; Taher, M. A. Desalination 2011, 278, 57-64.
  • T¨urker, A. R. Clean-Soil, Air, Water 2007, 35, 548-557.
  • T¨urker, A. R. Sep. Purif. Rev. 2012, 41, 169-206.
  • Soylak, M.; Unsal, Y. E.; Kızıl, N.; Aydın, A. Food Chem. Toxicol. 2010, 48, 517-521.
  • He, Q.; Hu, Z.; Jiang, Y.; Chang, X.; Tu, Z.; Zhang, L. J. Hazard. Mater. 2010, 175, 710-714.
  • Hazer, O.; Kartal, S¸.; Tokalıo˘glu, S¸. J. Anal. Chem. 2009, 64, 609-614.
  • Mahmoud, M. E.; Osman, M. M.; Hafez, O. F.; Hegazi, A. H.; Elmelegy, E. Desalination 2010, 251, 123-130.
  • Burham, N.; Azeem, S. A.; El-Shahat, M. F. Cent. Eur. J. Chem. 2009, 7, 945-954.
  • Zachariadis, G. A.; Anthemidis, A. N.; Bettas, P. G.; Stratis, J. A. Talanta 2002, 57, 919-927.
  • Baytak, S.; T¨urker, A. R. J. Hazard. Mater. 2006, B 129, 130-136.
  • Baytak, S.; Ko¸cyi˘git, A.; T¨urker, A. R. Clean-Soil, Air, Water 2007, 35, 607-611.
  • Hu, L. N.; Ren, Z. G. Chinese Chem. Lett. 2009, 20, 334-338.
  • Suleiman, J. S.; Hu, B.; Peng, H.; Huang, C. Talanta 2009, 77, 1579-1583. Kara, D. Talanta 2009, 79, 429-435.
  • Martinis, E. M.; Bert´on, P.; Altamirano, J. C.; Hakala, U.; Wuilloud, R. G. Talanta 2010, 80, 2034-2040.
  • Ren, Y.; Fan, Z.; Wang, J. Microchim. Acta 2007, 158, 227-231.
  • Li, Y-H.; Luan, Z.; Xu, X.; Zhou, X.; Xu, C.; Wu, D.; Wei, B. Adsorp. Sci. Tech. 2003, 21, 475-485.
  • Li, Y-H.; Wang, S.; Luan, Z.; Ding, J.; Xu, C.; Wu, D. Carbon 2003, 41, 1057-1062.
  • Dharmaraj, N; Kim, C. H.; Kim, H. Y. Synth. React. Inorg. M., 2006, 36, 29-32.
  • Cordova-Martinez, W.; De La Rosa-Cruz, E.; Diaz-Torres, L. A.; Salas, P.; Montoya, A.; Avendano, M.; Rodriguez, R. A.; Barbosa-Garcia, O. Optical Mater. 2002, 20, 263-271.
  • Salas, P.; De La Rosa-Cruz, E.; Mendoza-Anaya, D.; Gonzalez-Martinez, P.; Catano, V. M.; Rodriguez, R. A. Mater. Lett. 2000, 45, 241-245.
  • Sahayam, A. C. Anal. Bioanal. Chem. 2002, 372, 840-842.
  • Akl, M. A. A.; Kenawy, I. M. M.; Lasheen, R. R. Microchem. J. 2004, 78, 143-156.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Preparation of 2-(N,N-dialkylamino)-2,4,6- cycloheptatrien-1-one derivatives from an isocyanide, a primary amine, propionaldehyde, and tropolone via Ugi-Smiles coupling reaction in the presence of silica nanoparticles

Abdolhossain MASSOUDI, Issa AMINI, Ali RAMAZANI

Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2'-bipyridine: $[Mn(bipy)_2(ClO_4)_2]$

İbrahim KANİ, Mehmet KURTÇA

Properties of the mixed adsorption layer: neutral detergent-tetramethylthiourea at interface electrode/solution

Jolanta NIESZPOREK, Dorota SIENKO, Dorota GUGALA-FEKNER

Evaluation of a wide rim phosphorylated calix[4]arene's properties as a sensory molecule in an Er(III)-PVC membrane sensor

Abbas Ali ZAMANI, Massoumeh PARINEJAD, Fataneh JAMALI

Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2'-bipyridine: [Mn(bipy)2(ClO4)2]

İbrahim KANİ, Mehmet KURTÇA

MWCNT/nano-ZrO2 as a new solid phase extractor: its synthesis, characterization, and application to atomic absorption spectrometric determination of lead

Orhan Murat KALFA, Özcan YALÇINKAYA, Ali Rehber TÜRKER

Bifunctionalized linked bis-spiro[furo[2,3-d]pyrimidine-6,5'- pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaones derived from one-pot reaction of (thio)barbituric acids with aromatic dialdehydes and BrCN in the presence of Et3N

Nader NOROOZI PESYAN, Mohammad JALILZADEH

Evaluation of a wide rim phosphorylated calix[4]arene's properties as a sensory molecule in an Er(III)-PVC membrane sensor

Mohammad Reza YAFTIAN, Abbas Ali ZAMANI, Massoumeh PARINEJAD, Fataneh JAMALI, Dominique MATT

Efficient one-pot alkylation of imines using nanosilver iodide in aqueous media

Javad SAFAEI-GHOMI, Ahmad KAKAVAND-QALENOEI

Synthetic access to benzazolyl (pyrazoles, thiazoles, or triazoles)

Bakr Fathy ABDEL-WAHAB, Hanan Ahmed MOHAMED