Modeling and optimization of simultaneous degradation of rhodamine B and acid red 14 binary solution by homogeneous Fenton reaction: a chemometrics approach

The study aimed to propose a mathematical method to investigate and optimize the simultaneous elimination process of multiple organic pollutants using the Fenton process. Hence, the treatment of rhodamine B (RB) and acid red 14 (AR14) dyes in their binary solution was studied. Multivariate curve resolution alternating least square (MCR-ALS), a novel chemometric method, was applied along with correlation constraints to resolute the UV-Vis spectrophotometric data, enabling quantification of investigated dyes despite a high spectral overlapping. Response surface methodology was adopted to assess the model and optimize individual and interactive effects of three independent factors (Fe2+, H2O2 and initial pH) on the simultaneous elimination of RB and AR14. The values of the regression coefficient for RB and AR14 were determined as 98.48 and 98.67 percent, respectively, revealing the reliability of the obtained polynomial models to predict decolorization efficiencies. Desirability function was employed to optimize the independent variables to attain the highest possible degradation performance for both dyes in their binary solution. At the optimum point of operation ([Fe2+] = 143.88 mg/L, [H2O2] = 126.89 mg/L and pH = 3.71), degradation efficiencies of RB and AR14 were found as 81.58% and 80.22%, respectively, which were nearly identical to the experimental results.

___

  • Akkaya GK, 2019, INT J ENVIRON SCI TE, V16, P2343, DOI 10.1007/s13762-018-1846-0
  • Aleksic M, 2010, DESALINATION, V257, P22, DOI 10.1016/j.desal.2010.03.016
  • Basturk E, 2019, J ENVIRON MANAGE, V248, DOI 10.1016/j.jenvman.2019.109300
  • Berradi M, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02711
  • Bilinska L, 2016, CHEM ENG J, V306, P550, DOI 10.1016/j.cej.2016.07.100
  • Bouafia-Chergui S, 2012, PROCEDIA ENGINEER, V33, P181, DOI 10.1016/j.proeng.2012.01.1192
  • Chen BL, 2020, CHEM ENG J, V380, DOI 10.1016/j.cej.2019.122531
  • Dukkanci M, 2016, TURK J CHEM, V40, P784, DOI 10.3906/kim-1602-59
  • Elhalil A, 2016, WATER RESOUR IND, V15, P41, DOI 10.1016/j.wri.2016.07.002
  • Fathinia M, 2015, SPECTROCHIM ACTA A, V136, P1275, DOI 10.1016/j.saa.2014.10.014
  • Garrido M, 2008, ANAL BIOANAL CHEM, V390, P2059, DOI 10.1007/s00216-008-1955-6
  • Garrido-Ramirez EG, 2010, APPL CLAY SCI, V47, P182, DOI 10.1016/j.clay.2009.11.044
  • Gomes FM, 2019, KNOWL-BASED SYST, V179, P21, DOI 10.1016/j.knosys.2019.05.002
  • Hasanzadeh M, 2020, J IND ENG CHEM, V81, P405, DOI 10.1016/j.jiec.2019.09.031
  • Hassani A, 2017, J ENVIRON CHEM ENG, V5, P1964, DOI 10.1016/j.jece.2017.03.032
  • Karimifard S, 2018, SCI TOTAL ENVIRON, V640, P772, DOI 10.1016/j.scitotenv.2018.05.355
  • Kerkez D, 2018, TREATMENT WASTEWATER, DOI [10.24867/GRID-2018-p20, DOI 10.24867/GRID-2018-P20]
  • Khaledian HR, 2019, MOLECULES, V24, DOI 10.3390/molecules24030383
  • Khan E, 2009, J HAZARD MATER, V161, P1024, DOI 10.1016/j.jhazmat.2008.04.049
  • Khataee A, 2016, J TAIWAN INST CHEM E, V65, P172, DOI 10.1016/j.jtice.2016.04.036
  • Kumar V, 2020, WATER ENVIRON RES, V92, P211, DOI 10.1002/wer.1192
  • Le TT, 2016, BIORESOURCE TECHNOL, V216, P203, DOI 10.1016/j.biortech.2016.05.077
  • Lellis B., 2019, BIOTECHNOL RES INNOV, V3, P275, DOI [10.1016/j., DOI 10.1016/J.BIORI.2019.09.001, 10.1016/j.biori.2019.09.001.]
  • Meng XS, 2019, MINER ENG, V132, P110, DOI 10.1016/j.mineng.2018.11.054
  • Mohajeri S, 2010, WATER SCI TECHNOL, V61, P1257, DOI 10.2166/wst.2010.018
  • Mohseni N, 2016, ANAL METHODS-UK, V8, P6739, DOI 10.1039/c6ay02091g
  • Mohseni N, 2014, SPECTROCHIM ACTA A, V122, P721, DOI 10.1016/j.saa.2013.11.073
  • Moradi SE, 2017, TURK J CHEM, V41, P426, DOI 10.3906/kim-1607-5
  • Nateri AS, 2017, COLOR RES APPL, V42, P591, DOI 10.1002/col.22130
  • Nomura Y, 2020, J HAZARD MATER, V383, DOI 10.1016/j.jhazmat.2019.121005
  • Oliveira JMS, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121558
  • Pandey A, 2020, RENEW ENERG, V150, P476, DOI 10.1016/j.renene.2019.12.095
  • Rad LR, 2015, J TAIWAN INST CHEM E, V47, P190, DOI 10.1016/j.jtice.2014.10.014
  • Roudi AM, 2018, WATER-SUI, V10, DOI 10.3390/w10050595
  • Sharma S, 2017, INT J ENVIRON SCI TE, V14, P1665, DOI 10.1007/s13762-017-1253-y
  • Sozen S, 2020, ENVIRON CHEM LETT, V18, P207, DOI 10.1007/s10311-019-00923-8
  • Sun SP, 2013, J MOL CATAL A-CHEM, V371, P94, DOI 10.1016/j.molcata.2013.01.027
  • Thomas M, 2017, FIBRES TEXT EAST EUR, V25, P108, DOI 10.5604/01.3001.0010.5380
  • Yaseen DA, 2018, ENVIRON SCI POLLUT R, V25, P1980, DOI 10.1007/s11356-017-0633-7
  • Yehia AM, 2019, SPECTROCHIM ACTA A, V219, P436, DOI 10.1016/j.saa.2019.04.081
  • Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014
  • Zolfaghari P, 2018, J ENVIRON CHEM ENG, V6, P6414, DOI 10.1016/j.jece.2018.09.033