Improvement of the adhesion of conductive poly m-toluidine onto chemically reduced-wool fabrics

Wool has disulphide bonds containing-hydrophobic external keratin layers, which act as a barrier for the modification through coating with hydrophilic materials. For that reason, in this work, to ensure a dense and homogenous conductive polymer coating onto the wool, the fabrics were subjected to the reduction process in the aqueous alkaline medium containing agents that can attack these disulphide bonds. Then, one of the polyaniline derivatives, poly $m$-toluidine PMT , was coated onto wool by in situ polymerization of $m$-toluidine sulphate using ammonium persulfate APS as an oxidant. The effects of conditions, such as the composition of reduction-bath and types of dopants were investigated, on the mass increase % and surface resistivity of the composite. The reduction pretreatment of wool with sodium hydrosulphide significantly improved the coating density, conductivity, and colour shade of PMT on the surface, compared to an untreated one. The coating stability of PMT/wool composite was examined by rubbing test and detergent washing, through surface resistivity measurements. The changes in structural and surface properties of wool fabrics were determined with ATR-FTIR, contact angle, and optical microscopic techniques, respectively. The performance of PMT/wool composite was also examined in the electromagnetic shielding effectiveness EMSE measurements within 30 MHz-3 GHz.

___

  • 1. Maestá Bezerra F, García Carmona Ó, García Carmona C, Souza Plath AM, Lis M. Biofunctional wool using β - cyclodextrins as vehiculizer of citronella oil. Process Biochem 2019; 77: 151-158. doi: 10.1016/j.procbio.2018.11.018
  • 2. Wang Q, Li J, Bai Y, Lu X, Ding Y et al. Photodegradation of textile dye Rhodamine B over a novel biopolymer– metal complex wool-Pd/CdS photocatalysts under visible light irradiation. Journal of Photochemistry and Photobiology B: Biology 2013; 126: 47-54. doi: 10.1016/j.jphotobiol.2013.07.007
  • 3. Kantouch A-a, Abdel-Fattah S, Hebeish A. Manganese(IV)-Initiated Graftcopolymerization of Methyl Methacrylate on Wool Fibers . Polymer Journal 1972; 3 (6): 675-680. doi: 10.1295/polymj.3.675
  • 4. Shavandi A, Ali MA. Graft polymerization onto wool fibre for improved functionality. Progress in Organic Coatings 2019; 130: 182-199. doi: 10.1016/j.porgcoat.2019.01.054
  • 5. Misra BN, Mehta IK, Sharma RK. Grafting onto wool. Polymer Bulletin 1980; 3 (1): 115-121. doi: 10.1007/BF00263214
  • 6. Ranjbar-Mohammadi M, Arami M, Bahrami H, Mazaheri F, Mahmoodi NM. Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids and Surfaces B: Biointerfaces 2010; 76 (2): 397-403. doi: 10.1016/j.colsurfb.2009.11.014
  • 7. Zhao W, Kong M, Feng C, Cheng X, Liu Y et al. Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating. Carbohydrate Polymers 2016; 136: 307-315. doi: 10.1016/j.carbpol.2015.09.049
  • 8. Vijayaraghavan R, Vedaraman N, Muralidharan C, Mandal AB, MacFarlane DR. Aqueous ionic liquid solutions as alternatives for sulphide-free leather processing. Green Chemistry 2015; 17 (2): 1001-1007. doi: 10.1039/C4GC01476F
  • 9. Matsuda H, Takahashi M, Shinoda K, Kikyotani S, Inagaki H. Process for producing reduced keratinous substances using urea or thiourea. 1979, Google Patents.
  • 10. Wang K, Li R, Ma JH, Jian YK, Che JN. Extracting keratin from wool by using l-cysteine. Green Chemistry 2016; 18 (2): 476-481. doi: 10.1039/C5GC01254F
  • 11. Kuzuhara A, Hori T. Reduction mechanism of tioglycolic acid on keratin fibers using microspectrophotometry and FT-Raman spectroscopy. Polymer 2003; 44 (26): 7963-7970.
  • 12. Kakkar P, Madhan B, Shanmugam G. Extraction and characterization of keratin from bovine hoof: A potential material for biomedical applications . SpringerPlus 2014; 3 (1): 596. doi: 10.1186/2193-1801-3-596
  • 13. Zhang P, Zhang N, Wang Q, Wang P, Yuan J et al. Disulfide bond reconstruction: A novel approach for grafting of thiolated chitosan onto wool. Carbohydrate Polymers 2019; 203: 369-377.
  • 14. Ogawa S, Fujii K, Kaneyama K, Arai K. Action of thioglycolic acid and L-cysteine to disulfide cross-links in hair fibers during permanent waving treatment . Sen’i Gakkaishi 2008; 64 (6): 137-144.
  • 15. Leichner C, Steinbring C, Baus RA, Baecker D, Gust R et al. Reactive keratin derivatives: A promising strategy for covalent binding to hair . Journal of Colloid and Interface Science 2019; 534: 533-541. doi: 10.1016/j.jcis.2018.09.062
  • 16. Garg S, Hurren C, Kaynak A. Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment . Synthetic Metals 2007; 157 (1): 41-47. doi: 10.1016/j.synthmet.2006.12.004
  • 17. Erdoğan MK, Karakışla M, Saçak M. Morphologically different silver particles decorated- conductive poly(oanisidine)/wool fabric composites and investigation of catalytic activity in reduction of methylene blue. Materials Chemistry and Physics 2019; 225: 72-83. doi: 10.1016/j.matchemphys.2018.12.021
  • 18. Kalkan Erdoğan M, Karakışla M. Simultaneous Deposition of Poly(o-anisidine) and Noble Ag Particles on Wool Fabric and The Evaluation of Its Performance as Catalyst in Dye Reduction. Journal of the Turkish Chemical Society Section A: Chemistry 2019; 6 (2): 225-236.
  • 19. Varesano A, Dall’Acqua L, Tonin C. A study on the electrical conductivity decay of polypyrrole coated wool textiles . Polymer Degradation and Stability 2005; 89 (1): 125-132. doi: 10.1016/j.polymdegradstab.2005.01.008
  • 20. Wang L, Lin T, Wang X, Kaynak A. Frictional and tensile properties of conducting polymer coated wool and alpaca fibers . Fibers and Polymers 2005; 6 (3): 259-262. doi: 10.1007/BF02875651
  • 21. Kaynak A, Wang L, Hurren C, Wang X. Characterization of conductive polypyrrole coated wool yarns . Fibers and Polymers 2002; 3 (1): 24-30. doi: 10.1007/BF02875365
  • 22. Varesano A, Tonin C. Improving Electrical Performances of Wool Textiles: Synthesis of Conducting Polypyrrole on the Fiber Surface. Textile Research Journal 2008; 78 (12): 1110-1115. doi: 10.1177/0040517507077488
  • 23. Turay CB, Kalkan Erdoğan M, Karakışla M, Saçak M. Conductive poly (o-anisidine)/poly (ethylene terephthalate) nonwoven composite: Investigation of synthesis parameters and electromagnetic shielding effectiveness . Journal of Industrial Textiles 2016; 46 (4): 1104-1120. doi: 10.1177/1528083715613629
  • 24. Babayan V, Kazantseva NE, Moučka R, Stejskal J. Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes . Cellulose 2017; 24 (8): 3445-3451. doi: 10.1007/s10570-017-1357-z
  • 25. Bradbury J, Chapman G, Hambly A, King N. Separation of chemically unmodified histologica Lcomponents of keratin fibres and analyses of cuticles . Nature 1966; 210 (5043): 1333.
  • 26. Wojciechowska E, Włochowicz A, Wesełucha-Birczyńska A. Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. Journal of Molecular Structure 1999; 511-512: 307-318. doi: 10.1016/S0022-2860(99)00173-8
  • 27. Arora M, Luthra V, Singh R, Gupta SK. Study of vibrational spectra of polyaniline doped with sulfuric acid and phosphoric acid. Applied Biochemistry and Biotechnology 2001; 96 (1): 173-181. doi: 10.1385/ABAB:96:1-3:173
  • 28. Trchová M, Stejskal J, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), in Pure and Applied Chemistry, 2011, pp. 1803.
  • 29. Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP et al. Vibrational Analysis of Polyaniline: A Model Compound Approach. The Journal of Physical Chemistry B 1998; 102 (38): 7382-7392. doi: 10.1021/jp972652o
  • 30. Kang ET, Neoh KG, Tan KL. Polyaniline: A polymer with many interesting intrinsic redox states . Progress in Polymer Science 1998; 23 (2): 277-324. doi: 10.1016/S0079-6700(97)00030-0
  • 31. Trchová M, Šeděnková I, Konyushenko EN, Stejskal J, Holler P et al. Evolution of Polyaniline Nanotubes: The Oxidation of Aniline in Water . Journal of Physical Chemistry B 2006; 110 (19): 9461-9468. doi: 10.1021/jp057528g
  • 32. Šeděnková I, Trchová M, Blinova NV, Stejskal J. In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films 2006; 515 (4): 1640-1646. doi: 10.1016/j.tsf.2006.05.038
  • 33. Colaneri NF, Schacklette LW. EMI shielding measurements of conductive polymer blends . IEEE Transactions on Instrumentation and Measurement 1992; 41 (2): 291-297. doi: 10.1109/19.137363