Highly improved electrocatalytic oxidation of dimethylamine borane on silver nanoparticles modified polymer composite electrode

Dimethylamine borane (DMAB) is a promising fuel alternative for fuel cell applications. In this work cyclic voltammetric behavior of DMAB was investigated on the polymerized aminophenol film decorated with Ag nanoparticles in alkaline media. The polymer film was formed on the glassy carbon electrode by electrochemical technique and then, the surface was modified with Ag nanoparticles. The surface of the modified electrode was identified by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy techniques. The developed electrode has displayed high electrocatalytic activity for DMAB oxidation in alkaline media depending on the supporting electrolyte concentration. Experimental parameters such as cycle number used in electropolymerization of p-aminophenol, deposition of Ag nanoparticles and supporting electrolyte were optimized.

___

  • 1. Boudghene Stambouli A, Traversa E. Fuel cells, an alternative to standard sources of energy. Renewable and Sustainable Energy Reviews 2002; 6 (3): 295-304. doi: 10.1016/S1364-0321(01)00015-6
  • 2. Artyushkova K, Serov A, Doan H, Danilovic N, Capuano CB et al. Application of X-ray photoelectron spectroscopy to studies of electrodes in fuel cells and electrolyzers. Journal of Electron Spectroscopy and Related Phenomena 2019; 231: 127-139. doi: 10.1016/j.elspec.2017.12.006
  • 3. Andújar JM, Segura F. Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews 2009; 13 (9): 2309-2322. doi: 10.1016/j.rser.2009.03.015
  • 4. Liu CH, Wang HM, Lin KJ, Kuo HC, Weng YH et al. Long-term neurotoxic effects of dimethylamine borane intoxication. Journal of the Neurological Sciences 2012; 319 (1-2): 147-151. doi: 10.1016/j.jns.2012.05.013
  • 5. Homma T, Tamaki A, Nakai H, Osaka T. Molecular orbital study on the reaction process of dimethylamine borane as a reductant for electroless deposition. Journal of Electroanalytical Chemistry 2003; 559: 131-136. doi: 10.1016/S0022-0728(03)00042-1
  • 6. Wojnicki M, Rudnik E, Luty-Błocho M, Pacławski K, Fitzner K. Kinetic studies of gold(III) chloride complex reduction and solid phase precipitation in acidic aqueous system using dimethylamine borane as reducing agent. Hydrometallurgy 2012; 127-128: 43-53. doi: 10.1016/j.hydromet.2012.06.015
  • 7. Vaškelis A, Tarozaite R, Jagminiene A, Tamašiunaite LT, Juškenas R et al. Gold nanoparticles obtained by Au(III) reduction with Sn(II): Preparation and electrocatalytic properties in oxidation of reducing agents. Electrochimica Acta 2007; 53 (2): 407-416. doi: 10.1016/j.electacta.2007.04.008
  • 8. Martins JI, Nunes MC. Comparison of the electrochemical oxidation of borohydride and dimethylamine borane on platinum electrodes: Implication for direct fuel cells. Journal of Power Sources 2008; 175 (1): 244-249. doi: 10.1016/j.jpowsour.2007.09.028
  • 9. Plana D, Dryfe RAW. The electro-oxidation of dimethylamine borane: Part 1, polycrystalline substrates. Electrochimica Acta 2011; 56 (11): 3835-3844. doi: 10.1016/j.electacta.2011.02.041
  • 10. Bayatsarmadi B, Peters A, Talemi P. Catalytic polymeric electrodes for direct borohydride fuel cells. Journal of Power Sources 2016; 322: 26-30. doi: 10.1016/j.jpowsour.2016.04.137
  • 11. Celik C, Boyaci San FG, Sarac HI. Effects of operation conditions on direct borohydride fuel cell performance. Journal of Power Sources 2008; 185 (1): 197-201. doi: 10.1016/j.jpowsour.2008.06.066
  • 12. Pylypko S, Zadick A, Chatenet M, Miele P, Cretin M et al. A preliminary study of sodium octahydrotriborate NaB3 H8 as potential anodic fuel of direct liquid fuel cell. Journal of Power Sources 2015; 286: 10-17. doi: 10.1016/j.jpowsour.2015.03.143
  • 13. Nagle LC, Rohan JF. Investigation of DMAB Oxidation at a Gold Microelectrode in Base. Electrochemical and Solid-State Letters 2005; 8 (5): C77-C80. doi: 10.1149/1.1883905
  • 14. Plana D, Rodriguez P, Koper MTM, Dryfe RAW. The electro-oxidation of dimethylamine borane: Part 2, in situ FTIR on single-crystal gold electrodes. Electrochimica Acta 2011; 56 (22): 7637-7643. doi: 10.1016/j.electacta.2011.06.072
  • 15. Sadik OA, Xu H, Sargent A. Multi-electron transfer mechanism of dimethylamine borane in electroless gold deposition. ournal of Electroanalytical Chemistry 2005; 583 (2): 167-175. doi: 10.1016/j.jelechem.2005.05.013
  • 16. Burke LD, Lee BH. Oxidation of some reducing agents used in electroless plating baths at gold anodes in aqueous media. Journal of Applied Electrochemistry 1992; 22 (1): 48-56. doi: 10.1007/BF01093011
  • 17. Sargent A, Sadik OA. Probing the mechanism of electroless gold plating using an EQCM II. Effect of Bath Additives on Interfacial Plating Processes. Journal of Electrochemical Society 2001; 148 (6): 413-420. doi: 10.1149/1.1370963
  • 18. Finkelstein DA, Da Mota N, Cohen JL, Abruña HD. Rotating disk electrode (RDE) investigation of BH −4 and BH3 OH − electro-oxidation at Pt and Au: Implications for BH −4 fuel cells. The Journal of Physical Chemistry C 2009; 113 (45): 19700-19712. doi: 10.1021/jp900933c
  • 19. Vijwani H, Mukhopadhyay SM. Palladium nanoparticles on hierarchical carbon surfaces: A new architecture for robust nano-catalysts. Applied Surface Science 2012; 263: 712-721. doi: 10.1016/j.apsusc.2012.09.146
  • 20. Hua M, Zhang S, Pan B, Zhang W, Lv L et al. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials 2012; 211-212: 317-331. doi: 10.1016/j.jhazmat.2011.10.016
  • 21. Solanki JN, Murthy ZVP. Highly monodisperse and sub-nano silver particles synthesis via microemulsion technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 359 (1-3): 31-38. doi: 10.1016/j.colsurfa.2010.01.058
  • 22. Lecerf N, Mathur S, Shen H, Veith M, Hüfner S. Chemical vapour and SOL-GEL syntheses of nano-composites and ceramics using metal-organic precursors. Scripta Materialia 2001; 44 (8-9): 2157-2160. doi: 10.1016/S1359- 6462(01)00913-7
  • 23. Lee DW, Kim BK. Synthesis of nano-structured titanium carbide by Mg-thermal reduction. Scripta Materialia 2003; 48 (11): 1513-1518. doi: 10.1016/S1359-6462(03)00130-1
  • 24. Driess M, Merz K, Schoenen R, Rabe S, Kruis FE et al. From molecules to metastable solids: Solid-state and chemical vapour syntheses (CVS) of nanocrystalline ZnO and Zn. Comptes Rendus Chimie 2003; 6 (3): 273-281. doi: 10.1016/S1631-0748(03)00040-7
  • 25. Kim K Do, Han DN, Kim HT. Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chemical Engineering Journal 2004; 104 (1-3): 55-61. doi: 10.1016/j.cej.2004.08.003
  • 26. Liguo Y, Yanhua Z. Preparation of nano-silver flake by chemical reduction method. Rare Metal Materials and Engineering 2010; 39 (3): 401-404. doi: 10.1016/s1875-5372(10)60088-4
  • 27. Habibi B, Pournaghi-Azar MH. Methanol oxidation on the polymer coated and polymer-stabilized Pt nanoparticles: A comparative study of permeability and catalyst particle distribution ability of the PANI and its derivatives. International Journal of Hydrogen Energy 2010; 35 (17): 9318-9328. doi: 10.1016/j.ijhydene.2010.01.088
  • 28. Arslan E, Çakir S. Electrochemical fabrication of polyproline modified graphite electrode decorated with Pd-Au bimetallic nanoparticles: Application for determination of carminic acid. Journal of Electroanalytical Chemistry 2016; 760: 32-41. doi: 10.1016/j.jelechem.2015.11.042
  • 29. Shahrokhian S, Salimian R, Rastgar S. Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime. Materials Science and Engineering C 2014; 34 (1): 318-325. doi: 10.1016/j.msec.2013.09.014
  • 30. El-Nagar GA, El-Deab MS, Mohammad AM, El-Anadouli BE. Promoting effect of hydrocarbon impurities on the electro-oxidation of formic acid at Pt nanoparticles modified GC electrodes. Electrochimica Acta 2015; 180: 268-279. doi: 10.1016/j.electacta.2015.08.119
  • 31. Ensafi AA, Abarghoui MM, Rezaei B. Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sensors and Actuators B Chemical 2015; 219: 1-9. doi: 10.1016/j.snb.2015.05.010
  • 32. Shahrokhian S, Hafezi-Kahnamouei M. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. Journal of Electroanalytical Chemistry 2018; 825: 30-39. doi: 10.1016/j.jelechem.2018.08.010
  • 33. Asadian E, Iraji Zad A, Shahrokhian S. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. Materials Science and Engineering C 2016; 58: 1098-1104. doi: 10.1016/j.msec.2015.09.022
  • 34. Shahrokhian S, Ranjbar S, Ghalkhani M. Modification of the Electrode Surface by Ag Nanoparticles Decorated Nano Diamond-graphite for Voltammetric Determination of Ceftizoxime. Electroanalysis 2016; 28 (3): 469-476. doi: 10.1002/elan.201500377
  • 35. Cui K, Song Y, Yao Y, Huang Z, Wang L. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochemistry Communications 2008; 10 (4): 663-667. doi: 10.1016/j.elecom.2008.02.016
  • 36. Kavian S, Azizi SN, Ghasemi S. Electrocatalytic detection of hydrazine on synthesized nanozeolite-supported Ag nanoparticle-modified carbon paste electrode at a negative potential in an alkaline medium. Journal of Molecular Liquids 2016; 218: 663-669. doi: 10.1016/j.molliq.2016.02.090
  • 37. Porras-Gutiérrez AG, Frontana-Uribe BA, Gutiérrez-Granados S, Griveau S, Bedioui F. In situ characterization by cyclic voltammetry and conductance of composites based on polypyrrole, multi-walled carbon nanotubes and cobalt phthalocyanine. Electrochimica Acta 2013; 89: 840-847. doi: 10.1016/j.electacta.2012.11.018
  • 38. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Progress in Polymer Science 2007; 32 (8-9): 876-921. doi: 10.1016/j.progpolymsci.2007.05.012
  • 39. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Progress in Polymer Science 2010; 35 (11): 1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005
  • 40. Ciszewski A, Milczarek G. Electrochemical detection of nitric oxide using polymer modified electrodes. Talanta 2003; 61 (1): 11-26. doi: 10.1016/S0039-9140(03)00355-2
  • 41. Ensafi AA, Amini M. A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sensors and Actuators B: Chemical 2010; 147 (1): 61-66. doi: 10.1016/j.snb.2010.03.014
  • 42. Kuwahara T, Ohta H, Kondo M, Shimomura M. Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Bioelectrochemistry 2008; 74 (1): 66-72. doi: 10.1016/j.bioelechem.2008.07.002
  • 43. Wang Z, Gao G, Zhu H, Sun Z, Liu H et al. Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol. International Journal of Hydrogen Energy 2009; 34 (23): 9334-9340. doi: 10.1016/j.ijhydene.2009.09.062
  • 44. Ehsani A, Mahjani MG, Jafarian M, Naeemy A. Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochimica Acta 2012; 71: 128-133. doi: 10.1016/j.electacta.2012.03.107
  • 45. Koçak ÇC, Dursun Z. Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly(p-aminophenol) film modified electrode. Journal of Electroanalytical Chemistry 2013; 694: 94-103. doi: 10.1016/j.jelechem.2013.02.006
  • 46. Karabiberoğlu ŞU, Dursun Z. Highly catalytic activity of platinum-gold particles modified poly(p-aminophenol) electrode for oxygen reduction reaction. Journal of Solid State Electrochemistry 2016; 20 (7): 2009-2018. doi: 10.1007/s10008-016-3201-z
  • 47. Karabiberoğlu ŞU, Koçak ÇC, Koçak S, Dursun Z. Polymer Film Supported Bimetallic Au–Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media. Nano-Micro Letters 2016; 8 (4): 358-370. doi: 10.1007/s40820-016-0095-3
  • 48. Karabiberoğlu ŞU, Dursun Z. Over-Oxidized Poly (Phenol Red) Film Modified Glassy Carbon Electrode for Anodic Stripping Voltammetric Determination of Ultra-Trace Antimony (III). Electroanalysis 2017; 29 (4): 1069-1080. doi: 10.1002/elan.201600629
  • 49. Mu S. Direct determination of arsenate based on its electrocatalytic reduction at the poly(aniline-co-o-aminophenol) electrode. Electrochemistry Communications 2009; 11 (7): 1519-1522. doi: 10.1016/j.elecom.2009.05.050
  • 50. Barbero C, Silber JJ, Sereno L. Electrochemical properties of poly-ortho-aminophenol modified electrodes in aqueous acid solutions. Journal of Electroanalytical Chemistry 1990; 291 (1-2): 81-101. doi: 10.1016/0022-0728(90)87179-N
  • 51. Menon S, Jesny S, Girish Kumar K. A voltammetric sensor for acetaminophen based on electropolymerizedmolecularly imprinted poly(o-aminophenol) modified gold electrode. Talanta 2018; 179: 668-675.doi: 10.1016/j.talanta.2017.11.074
  • 52. Valdés García MA, Tuñón Blanco P, Ivaska A. A poly(o-aminophenol) modified electrode as an amperometric hydrogen peroxide biosensor. Electrochimica Acta 1998; 43 (23): 3533-3539. doi: 10.1016/S0013-4686(98)00101-7
  • 53. Pishahang J, Amiri HB, Heli H. Synthesis of carbon nanoparticles-poly(ortho-aminophenol) nanocomposite and its application for electroanalysis of iodate. Sensors and Actuators B Chemical 2018; 256: 878-887. doi: 10.1016/j.snb.2017.10.030
  • 54. Koçak ÇC, Nas A, Kantekin H, Dursun Z. Simultaneous determination of theophylline and caffeine on novel [Tetra- (5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode. Talanta 2018; 184: 452-460. doi: 10.1016/j.talanta.2018.03.029
  • 55. Tucceri R. Effect of prolonged electrode potential cycling on the charge transport parameters of poly(o-aminophenol) films. A study employing rotating disc electrode voltammetry and surface resistance. Journal of Electroanalytical Chemistry 2014; 717-718: 131-139. doi: 10.1016/j.jelechem.2014.01.023
  • 56. Wang C, Xiong Z, Sun P, Wang R, Zhao X et al. Facile longitudinal unzipped multiwalled carbon nanotubes incorporated overoxidized poly(p-aminophenol) modified electrode for sensitive simultaneous determination of dopamine, uric acid and tryptophan. Journal of Electroanalytical Chemistry 2017; 801: 395-402. doi:10.1016/j.jelechem.2017.08.028
  • 57. Liu L-P, Yin Z-J, Yang Z-S. A l-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 2010; 79 (1): 84-89. doi: 10.1016/J.BIOELECHEM.2009.12.003
  • 58. Carbone ME, Ciriello R, Guerrieri A, Salvi AM. Poly(o-aminophenol) electrosynthesized onto platinum at acidic and neutral ph: Comparative investigation on the polymers characteristics and on their inner and outer interfaces. Internatinal Journal of Electrochemical Science 2014; 9 (4): 2047-2066.
  • 59. Carbone ME, Ciriello R, Granafei S, Guerrieri A, Salvi AM. EQCM and XPS investigations on the redox switching of conducting poly(o-aminophenol) films electrosynthesized onto Pt substrates. Electrochimica Acta 2015; 176: 926- 940. doi: 10.1016/j.electacta.2015.07.047
  • 60. Carbone ME, Ciriello R, Granafei S, Guerrieri A, Salvi AM. Electrosynthesis of conducting poly(o-aminophenol) films on Pt substrates: A combined electrochemical and XPS investigation. Electrochimica Acta 2014; 144: 174-185. doi: 10.1016/j.electacta.2014.08.047
  • 61. Kong FY, Yao L, Li RF et al. Synthesis of nitrogen-doped reduced graphene oxide loading with Au-Ag bimetallic nanoparticles for electrochemical detection of daunorubicin. Journal of Alloys and Compounds 2019; 797: 413-420. doi: 10.1016/j.jallcom.2019.04.276
  • 62. Rahman MM, Wahid A, Alam MM, Asiri AM. Efficient 4-Nitrophenol sensor development based on facile Ag@Nd 2 O3 nanoparticles. Materials Today Communications 2018; 16: 307-313. doi: 10.1016/j.mtcomm.2018.07.009
  • 63. Prasad KS, Chuang M, Ho JA. Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot. Talanta 2012; 88: 445-449. doi: 10.1016/j.talanta.2011.10.056
  • 64. Carvalho RC, Gouveia-Caridade C, Brett CMA. Glassy carbon electrodes modified by multiwalled carbon nanotubes and poly(neutral red): A comparative study of different brands and application to electrocatalytic ascorbate determination. Analytical and Bioanalytical Chemistry 2010; 398 (4): 1675-1685. doi: 10.1007/s00216-010-3966-3
  • 65. Araminait R, Garjonyt R, Malinauskas A. Rotating disk electrode study of Prussian blue- and glucose oxidasebased bioelectrode. Journal of Electroanalalytical Chemistry 2012; 672: 12-16. doi: 10.1016/j.jelechem.2012.03.005