Gaseous and dissolved oxygen sensing with stabilized pyrene in ionic liquid modified electrospun slides

Pyrene dye has many superior characteristics for oxygen sensing studies such as long fluorescence lifetime, high quantum yield, and good sensitivity. It is preferred in some cases over ruthenium dyes for its more lipophilic character and higher sensitivity. However, easy photodegradation of pyrene is a challenging problem. In this study, pyrene dye was for the first time immobilized in an ethyl cellulose matrix and used for oxygen sensing in the form of thin films and electrospun sensing slides. The hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was used as additive for the first time for dissolved oxygen sensing studies. The oxygen sensitivity of the dye was evaluated with both steady state- and fluorescence lifetime-based measurements. The sensing slides were stable for 45 min under continuous irradiation and could be stored for 100 days under ambient laboratory conditions. This storage time is the longest reported lifetime for pyrene-based sensors. The enhanced stability can be attributed to the presence of ionic liquid, which behaves like a sink for oxidative, reductive, acidic, and/or basic effects. The sensor response time was between 6 and 20 s, depending on the oxygen concentration. The method can be applied for both dissolved and gaseous oxygen measurements.

Gaseous and dissolved oxygen sensing with stabilized pyrene in ionic liquid modified electrospun slides

Pyrene dye has many superior characteristics for oxygen sensing studies such as long fluorescence lifetime, high quantum yield, and good sensitivity. It is preferred in some cases over ruthenium dyes for its more lipophilic character and higher sensitivity. However, easy photodegradation of pyrene is a challenging problem. In this study, pyrene dye was for the first time immobilized in an ethyl cellulose matrix and used for oxygen sensing in the form of thin films and electrospun sensing slides. The hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was used as additive for the first time for dissolved oxygen sensing studies. The oxygen sensitivity of the dye was evaluated with both steady state- and fluorescence lifetime-based measurements. The sensing slides were stable for 45 min under continuous irradiation and could be stored for 100 days under ambient laboratory conditions. This storage time is the longest reported lifetime for pyrene-based sensors. The enhanced stability can be attributed to the presence of ionic liquid, which behaves like a sink for oxidative, reductive, acidic, and/or basic effects. The sensor response time was between 6 and 20 s, depending on the oxygen concentration. The method can be applied for both dissolved and gaseous oxygen measurements.

___

  • Wang, X. D.; Wolfbeis, O. S. Anal. Chem. 2013, 85, 487–508.
  • Basu, B. J.; Thirumurugan, A.; Dinesh, A. R.; Anandan, C.; Rajam, K. S. Sensor. Actuat. B-Chem. 2005, 104, 15–
  • Gouterman, M. J. Chem. Educ. 1997, 74, 697–702.
  • Fujiwara, Y.; Amao, Y. Sensor. Actuat. B-Chem. 2003, 89, 187–191.
  • Fujiwara, Y.; Amao, Y. Sensor. Actuat. B-Chem. 2003, 89, 58–61.
  • Ishiji, T.; Kaneko, M. Analyst 1995, 120, 1633–1638.
  • Fujiwara, Y.; Amao, Y. Sensor. Actuat. B-Chem. 2002, 85, 175–178.
  • Sharma, A.; Wolfbeis, O. S. Spectroscopy 1988, 42, 1009–1011.
  • Lee, E. D.; Werner, T. C.; Seitz, R. Anal. Chem. 1987, 59, 279–283.
  • Xu, W.; Schmidt, R.; Whaley, M.; Demas, J. N.; Degraff, B. A.; Karikari, E. K.; Farmer, B. L. Anal. Chem. 1995, 67, 3172–3180.
  • Lubbers, D. W.; Opitz, N. Sensor. Actuat. B-Chem. 1983, 4, 641–654.
  • Oter, O.; Ribou, A. C. J. Fluoresc. 2009, 19, 389–397.
  • Ribou, A. C.; Vigoa, J.; Kohenb, E.; Salmon, J. M. J. Photoch. Photobio. B 2003, 70, 107–115.
  • Clark, C. D.; De Bruyn, W. J.; Ting, J.; Scholle, W. J. Photoch. Photobio. A 2007, 186, 342–348.
  • Kub´at, P.; Civiˇs, S.; Muck, A.; Barek, J.; Zima, J. J. Photoch. Photobio. A 2000, 132, 33–36.
  • Fujiwara, Y.; Amao, Y. Talanta 2004, 62, 655–660.
  • Bekiari, V.; Lianos, P. J. Colloid Interf. Sci. 1996, 182, 304–305.
  • Basu, B. J.; Rajam, K. S. Sensor. Actuat. B-Chem. 2004, 99, 459–467.
  • Hrdlovi, P.; Koll´ar, J.; Chmela, ˇS. J. Photoch. Photobio. A 2004, 163, 289–296.
  • Serban, B.; Costea, S.; Buiu, O.; Cobianu, C.; Diaconu, C. In CAS 2012, Proceedings of the International
  • Semiconductor Conference, Sinaia, Romania, 15–17 October 2012; IEEE Romania Section Electron Device Chapter: Romania, 2012, pp. 265–268.
  • Zhang, H.; Lei, B.; Mai, W.; Liua, Y. Sensor. Actuat. B-Chem. 2011, 160, 677–683.
  • Wu, X.; Song, L.; Li, B.; Liu, Y. J. Lumin. 2010, 130, 374–379.
  • Estella, J.; Wencel, D.; Mooreb, J. P.; Sourdaine, M.; McDonagh, C. Anal. Chim. Acta 2010, 666, 83–90. Wang, X. F. J. Lumin. 2013, 134 , 508–514.
  • Borisov, S. M.; Mayr, T.; Mistlberger, G.; Waich, K.; Koren, K.; Chojnacki, P.; Klimant, I.; Talanta 2009, 79, 1322–1330.
  • Fuller, J.; Carlin, R. T.; De Long, H. C.; Haworth, D. Chem. Commun. 1994, 3, 299–300.
  • Rogers, R. D.; Seddon, K. R. In Ionic Liquids III: Fundamentals, Challenges, and Oppurtunities, ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2005.
  • Rogers, R. D.; Seddon, K. R. In Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symposium Series 818 ; American Chemical Society: Washington, DC, USA, 2002.
  • Baker, G. A.; Baker, S.; Pandey, S.; Bright, F. V. Analyst 2005, 130, 800–808.
  • Berthod, A.; He, L. F.; Armstrong, D. W. Chromatographia 2001, 53, 63–68.
  • Poole, C. F. J. Chromatogr. A 2004, 1037, 49–82.
  • Armstrong, D. W.; He, L. F.; Liu, Y. S. Anal. Chem. 1999, 71, 3873–3876.
  • Ongun, M. Z.; Oter, O.; Sabancı, G.; Ertekin, K.; Celik, E. Sensor. Actuat. B-Chem. 2013, 183, 11–19.
  • Aydogdu, S.; Ertekin, K.; Suslu, A.; Ozdemir, M.; Celik, E.; Cocen, U. J. Fluoresc. 2011, 21, 607–613.
  • Oter, O.; Ertekin, K.; Topkaya, D.; Alp, S. Sensor. Actuat. B-Chem. 2006, 117, 295–301
  • Oter, O.; Ertekin, K.; Topkaya, D.; Alp, S. Anal. Bioanal. Chem. 2006, 386, 1225–1234.
  • Oter, O.; Ertekin, K.; Derinkuyu, S. Talanta 2008, 76, 557–563.
  • Borisov, S. M.; Waldhier, M. C.; Klimant, I.; Wolfbeis, O. S. Chem. Mater. 2007, 19, 6187–6194.
  • Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926–927.
  • Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. J. Phys. Chem. B 2002, 106, 7315–7320.
  • MacFarlane, D. R.; Pringle, J. M.; Johansson, K. M.; Forsyth S. A.; Forsyth M. Chem. Commun. 2006, 106, 1905–1917.
  • Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. J. Am. Chem. Soc. 2002, 124, 5962–5963.
  • Deitzel, J. M.; Kleinmeyer, J.; Tan, N. C. Polymer 2001, 42, 261–272.
  • Delgado, J. M.; Raymundo, A.; Vilarigues, M.; Branco, L. C.; Laia, C. A. T. Chem. Eur. J. 2014, 20, 1–8.
  • Istratov, A. A.; Vyvenko, O. F. Rev. Sci. Ins. 1999, 70, 1233–1257.
  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy ; Springer: Germany, 2006.
  • Hrdlovic, P.; Lukac, I. J. Photoch. Photobio. A 2000, 133, 73–82.
  • Wallace, S. C.; Thomas, J. K. Radiat. Res. 1973, 54, 49–62.
  • Geiger, M. W.; Turro, N. J . Photochem. Photobiol. 1975, 22, 273–276.
  • Borisov, S. M.; Vasylevska, A. S.; Krause, C.; Wolfbeis, O. S. Adv. Funct. Mater. 2006, 16, 1536–1542.
  • Dias, A. M. A.; Freire, M. G.; Coutinho, J. A. P.; Marrucho, I. M. Fluid Phase Equilibr. 2004, 222, 325–330.
  • Xiong, Y., Xu, J.; Zhu, D.; Duan, C.; Guan, Y. J. Sol-Gel Sci. Techn. 2010, 53, 441–447.
  • Xiong, X.; Xiao, D.; Choi, M. M. F. Sensor. Actuat. B-Chem. 2006, 117, 172–176.
  • Xuea, R.; Beherab, P.; Xua, J.; Viapianob, M. S.; Lannuttia, J. J. Sensor. Actuat. B-Chem. 2014, 192, 697–707.
  • Sigman, M. E.; Schuler, P. F.; Ghosh, M. M.; Dabestani, R. T. Environ. Sci. Technol. 1998, 32, 3980–3985.
  • Mill, T.; Mabey, W. R.; Lan, B. Y.; Baraze, A. Chemosphere 1981, 10, 1281–1290.
  • Clark, C. D.; Warren, J. B.; Jackie, T.; William, S. J. Photoch. Photobio. A 2007, 186, 342–348.
  • Basu, B. J.; Anandan, C.; Rajam, K. S. Sensor. Actuat. B-Chem. 2003, 94, 257–266.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis, structural characterization, and antimicrobial efficiency of sulfadiazine azo-azomethine dyes and their bi-homonuclear uranyl complexes for chemotherapeutic use

ABDALLA M. KHEDR, Fawaz A. SAAD

A green light emitting polymer in a PMMA matrix: oligo(azomethine-ether) with benzothiazole moieties

MEHMET YILDIRIM, İSMET KAYA

Gaseous and dissolved oxygen sensing with stabilized pyrene in ionic liquid modified electrospun slides

Özlem ÖTER, Gülhan Sabanci ŞAHİN

Redox polymerization of N-isopropylacrylamide by using hydroxylated soya oil polymer

Abdulkadir ALLI, Timur ŞANAL, Baki HAZER

Synthesis and electrochemistry of phthalocyanines bearing [(3,4-dimethoxybenzyl)oxy] groups

İpek ÖMEROĞLU, Zekeriya BIYIKLIOĞLU

The synthesis of 1,3-dialkyl-4-methylimidazolinium salts and their application in palladium catalyzed Heck coupling reactions

Murat YİĞİT, Gülin BAYAM, Beyhan YİĞİT, İsmail ÖZDEMİR

Synthesis of new oxindole derivatives containing benzothiazole and thiazolidinone moieties using nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) as catalyst

ROBABEH BAHARFAR, NARGES SHARIATI

Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors

MEHDI RIMAZ, PARIA POURHOSSEIN, BEHZAD KHALILI

Fluorescent mono- and tetra-dansylated cavitands: synthesis and acid sensitivity

ÜMİT İŞCİ, YUNUS ZORLU, FABIENNE DUMOULIN

Effect of sonic treatment on the permeation performance of cellulose acetate membranes modified by n-SiO_2

Gülsen ASMAN, Mürvet KAYA, Nursel Pekel BAYRAMGİL