Evaluation of carbonic anhydrase and paraoxonase inhibition activities and molecular docking studies of highly water-soluble sulfonated phthalocyanines

The investigation of carbonic anhydrase and paraoxonase enzyme inhibition properties of water-soluble zinc and gallium phthalocyanine complexes (1 and 2) are reported for the first time. The binding of p-sulfonylphenoxy moieties to the phthalocyanine structure favors excellent solubilities in water, as well as providing an inhibition effect on carbonic anhydrase (CA) I and II isoenzymes and paraoxonase (PON I) enzyme. According to biological activity results, both complexes inhibited hCA I, hCA II, and PON1. Whereas 1 and 2 showed moderate hCA I and hCA II (off-target cytosolic isoforms) inhibitory activity (K-i values of 26.09 mu M and 43.11 mu M for hCA I and 30.95 mu M and 33.19 mu M for hCA II, respectively), they exhibited strong PON1 (associated with high-density lipoprotein [HDL]) inhibitory activity (K-i values of 0.37 mu M and 0.27 mu M, respectively). The inhibition kinetics were analyzed by Lineweaver-Burk double reciprocal plots. It revealed that 1 and 2 were noncompetitive inhibitors against PON1, hCA I, and hCA II. These complexes can be snore advantageous than other synthetic CA and PON inhibitors due to their water solubility. Docking studies were carried out to examine the interactions between hCA I, hCA II, and PON1 inhibitors and metal complexes at a molecular level and to predict binding energies.

___

  • Arslan T, 2019, BIOORG CHEM, V90, DOI 10.1016/j.bioorg.2019.103100
  • Arslan T, 2018, RSC ADV, V8, P10172, DOI 10.1039/c7ra13674a
  • Atahan A, 2018, CHEMISTRYSELECT, V3, P529, DOI 10.1002/slct.201702562
  • Bozdag M, 2015, J ENZYM INHIB MED CH, V30, P240, DOI 10.3109/14756366.2014.912216
  • Chen X, 2020, J OCEAN U CHINA, V19, P209, DOI 10.1007/s11802-020-4174-1
  • Chino Y, 2017, J PORPHYR PHTHALOCYA, V21, P159, DOI 10.1142/S1088424617500389
  • Cimen Y, 2014, SENSOR ACTUAT B-CHEM, V202, P1137, DOI 10.1016/j.snb.2014.06.066
  • Congiu C, 2014, BIOORG MED CHEM LETT, V24, P1776, DOI 10.1016/j.bmcl.2014.02.030
  • D'Ambrosio K, 2012, J MED CHEM, V55, P6776, DOI 10.1021/jm300818k
  • Dumoulin F, 2010, COORDIN CHEM REV, V254, P2792, DOI 10.1016/j.ccr.2010.05.002
  • Erdemir P, 2019, BIOORG CHEM, V91, DOI 10.1016/j.bioorg.2019.103134
  • Feofanov A, 2002, PHOTOCHEM PHOTOBIOL, V75, P527, DOI 10.1562/0031-8655(2002)075<0527:CWMINE>2.0.CO;2
  • Gokce B, 2019, J BIOCHEM MOL TOXIC, V33, DOI 10.1002/jbt.22407
  • Gunsel A, 2020, J MOL STRUCT, V1214, DOI 10.1016/j.molstruc.2020.128210
  • Guzel E, 2020, SYNTHETIC MET, V262, DOI 10.1016/j.synthmet.2020.116331
  • Guzel E, 2019, J ELECTROCHEM SOC, V166, pH438, DOI 10.1149/2.0511910jes
  • Guzel E, 2019, RSC ADV, V9, P10854, DOI 10.1039/c8ra10665g
  • Guzel E, 2017, J COORD CHEM, V70, P2659, DOI 10.1080/00958972.2017.1366471
  • Guzel E, 2017, INORG CHIM ACTA, V467, P169, DOI 10.1016/j.ica.2017.07.058
  • Guzel E, 2017, SUPRAMOL CHEM, V29, P536, DOI 10.1080/10610278.2017.1288232
  • Guzel E, 2015, SYNTHETIC MET, V199, P372, DOI 10.1016/j.synthmet.2014.11.032
  • Guzel E, 2013, DYES PIGMENTS, V97, P238, DOI 10.1016/j.dyepig.2012.12.027
  • Harel M, 2004, NAT STRUCT MOL BIOL, V11, P412, DOI 10.1038/nsmb767
  • Ivanova J, 2015, CHEM COMMUN, V51, P7108, DOI 10.1039/c5cc01854d
  • Karatas MO, 2019, APPL ORGANOMET CHEM, V33, DOI 10.1002/aoc.5130
  • Karatas MO, 2016, BIOORGAN MED CHEM, V24, P1392, DOI 10.1016/j.bmc.2016.02.012
  • Karlik O, 2019, ARCH PHARM, V352, DOI 10.1002/ardp.201800325
  • Korkut SE, 2017, J PORPHYR PHTHALOCYA, V21, P16, DOI 10.1142/S1088424616501261
  • Kurt BZ, 2016, RUSS J BIOORG CHEM+, V42, P506, DOI 10.1134/S1068162016050046
  • Kurt BZ, 2019, EUR J MED CHEM, V183, DOI 10.1016/j.ejmech.2019.111702
  • Kurt BZ, 2019, BIOORG CHEM, V87, P838, DOI 10.1016/j.bioorg.2019.03.003
  • Kurt BZ, 2017, J ENZYM INHIB MED CH, V32, P1042, DOI 10.1080/14756366.2017.1354857
  • Kurt BZ, 2016, J ENZYM INHIB MED CH, V31, P991, DOI 10.3109/14756366.2015.1077823
  • Kurt O, 2015, NEW J CHEM, V39, P5767, DOI 10.1039/c5nj00933b
  • Lineweaver H, 1934, J AM CHEM SOC, V56, P658, DOI 10.1021/ja01318a036
  • Mamedova G, 2019, BIOORG CHEM, V93, DOI 10.1016/j.bioorg.2019.103313
  • MCRORIE RA, 1976, BIOCHEM BIOPH RES CO, V71, P492, DOI 10.1016/0006-291X(76)90814-7
  • Mentese E, 2019, ARCH PHARM, V352, DOI 10.1002/ardp.201900227
  • Rifati-Nixha A, 2019, J BIOCHEM MOL TOXIC, V33, DOI 10.1002/jbt.22306
  • Ritchie D, 1996, HEX 8 0 0 USER MANUA .
  • Rodrigo L, 2001, CHEM-BIOL INTERACT, V137, P123, DOI 10.1016/S0009-2797(01)00225-3
  • Sinan S, 2006, BIOCHIMIE, V88, P565, DOI 10.1016/j.biochi.2005.12.004
  • Sobotta L, 2019, INORG CHIM ACTA, V489, P180, DOI 10.1016/j.ica.2019.02.031
  • Sorenson RC, 1999, CHEM-BIOL INTERACT, V119, P243, DOI 10.1016/S0009-2797(99)00033-2
  • Taslimi P, 2019, BIOORG CHEM, V92, DOI 10.1016/j.bioorg.2019.103213
  • Topal M, 2014, TURK J CHEM, V38, P894, DOI 10.3906/kim-1403-5
  • VERPOORTE JA, 1967, J BIOL CHEM, V242, P4221
  • Wierzchowski M, 2020, J PHOTOCH PHOTOBIO B, V202, DOI 10.1016/j.jphotobiol.2019.111703
  • Yildiz B, 2019, SOL ENERGY, V191, P654, DOI 10.1016/j.solener.2019.09.043
  • Zheng XL, 2017, J MATER CHEM A, V5, P24416, DOI 10.1039/c7ta07216c
  • Zubriene A, 2015, BIOPHYS CHEM, V205, P51, DOI 10.1016/j.bpc.2015.05.009