Entrapment of organic fluorophores in calcium phosphate nanoparticles with slow release

Two organic fluorophores, fluorescein (F) and rhodamine B (Rd), were entrapped in calcium phosphate nanoparticles. The as-obtained nanoparticles can be used for biological release applications. For this aim, calcium phosphate nanoparticles were synthesized using the precipitation method. Structural analysis of these nanoparticles was performed using XRD, FTIR, and Raman spectroscopy, confirming that the synthesized nanoparticles were hydroxyapatite. TEM and SEM analyses demonstrated that these nanoparticles had a size of 20 nm and a well-defined morphology. F and Rd (about 0.5 wt.%) were entrapped in these nanoparticles and their release, as a function of time, was studied via UV-Vis spectroscopy. The obtained results showed that the release of both fluorophores was progressive over time. The trapping efficiencies of the fluorophores were 67.15% and 90.76% for F and Rd, respectively.

___

  • 1. Higuita LP, Vargas AF. Effect of addition of calcium ions and hydrothermal treatment on the morphology of calcium phosphates. Materials Letters 2017; 190: 146-149. doi: 10.1016/j.matlet.2016.12.102
  • 2. Zyman Z, Goncharenko A, Rokhmistrov D. Kinetics and mechanisms of the transformation of precipitated amorphous calcium phosphate with a Ca/P ratio of 1:1 to calcium pyrophosphates. Journal of Crystal Growth 2017; 478: 117-122. doi: 10.1016/j.jcrysgro.2017.08.031
  • 3. Canillas M, Pena P, de Aza AH, Rodríguez MA. Calcium phosphates for biomedical applications. Boletín de La Sociedad Española de Cerámica y Vidrio 2017; 56 (3): 91-112. doi: 10.1016/j.bsecv.2017.05.001
  • 4. Cai Y, Tang R. Calcium phosphate nanoparticles in biomineralization and biomaterials. Journal of Materials Chemistry 2008; 18 (32): 3775. doi: 10.1039/B805407J
  • 5. Loomba L, Sekhon BS. Calcium phosphate nanoparticles and their biomedical potential. Journal of Nanomaterials & Molecular Nanotechnology 2015; 4 (1): 1-12. doi: 10.4172/2324-8777.1000154
  • 6. Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics 2005; 288 (1): 157-168. doi: 10.1016/j.ijpharm.2004.07.035
  • 7. Lopera AA, Chavarriaga EA, Zuluaga B, Marin S, Giraldo GO et al. Effect of salt concentration on the electrical and morphological properties of calcium phosphates obtained via microwave-induced combustion synthesis. Advanced Powder Technology 2017; 28 (10): 2787-2795. doi: 10.1016/j.apt.2017.08.007
  • 8. Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. In: Powell MF, Newman MJ (editors). Vaccine Design. Pharmaceutical Biotechnology, Vol 6. Boston, MA, USA: Springer, 1995, pp. 229-248. doi: 10.1007/978-1-4615-1823-5_8
  • 9. Sokolova V, Rotan O, Klesing J, Nalbant P, Buer J et al. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. Journal of Nanoparticle Research 2012; 14 (6). doi: 10.1007/s11051-012-0910-9
  • 10. Hu Q, Tan Z, Liu Y, Tao J, Cai Y et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry 2007; 17 (44): 4690-4698. doi: 10.1039/b710936a
  • 11. Laquerriere P, Grandjean-Laquerriere A, Jallot E, Nardin M, Frayssinet P et al. Influence des propriétés physicochimiques d’hydroxyapatites sur le comportement cellulaire. Innovation et Technologie en Biologie et MédecineRevue de Technologie Biomédicale 2005; 26 (3): 200-205 (in French). doi: 10.1016/j.rbmret.2005.04.007
  • 12. Rey C, Combes C, Drouet C, Grossin D, Bertrand G et al. Bioactive calcium phosphate compounds: Physical chemistry. Comprehensive Biomaterials II 2017; 244-290. doi: 10.1016/B978-0-12-803581-8.10171-7
  • 13. Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A et al. Application of calcium phosphate nanoparticles in biomedicine. Journal of Materials Chemistry 2010; 20 (1): 18-23. doi: 10.1039/b910885h
  • 14. Doat A, Pellé F, Gardant N, Lebugle A. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. Journal of Solid State Chemistry 2004; 177 (4-5): 1179-1187. doi: 10.1016/j.jssc.2003.10.023
  • 15. Mondéjar SP, Kovtun A, Epple M. Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. Journal of Materials Chemistry 2007; 17 (39): 4153. doi: 10.1039/b708258d
  • 16. Chane-Ching JY, Lebugle A, Rousselot I, Pourpoint A, Pell F. Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. Journal of Materials Chemistry 2007; 17 (28): 2904. doi: 10.1039/b701194f
  • 17. Lebugle A, Pellé F, Charvillat C, Rousselot I, Chane-Ching JY. Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes. Chemical Communications 2006; 2006 (6): 606. doi: 10.1039/b515164c
  • 18. Wang F, Tan WB, Zhang Y, Fan X, Wang M. Luminescent nanomaterials for biological labelling. Nanotechnology 2005; 17 (1): R1-R13. doi: 10.1088/0957-4484/17/1/r01
  • 19. Schwiertz J, Wiehe A, Gräfe S, Gitter B, Epple M. Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 2009; 30 (19): 3324-3331. doi: 10.1016/j.biomaterials.2009.02.029
  • 20. Altınoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2008; 2 (10): 2075-2084. doi: 10.1021/nn800448r
  • 21. Morgan TT, Muddana HS, Altinog?lu EI, Rouse SM, Tabakovicì A et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Letters 2008; 8 (12): 4108-4115. doi: 10.1021/nl8019888
  • 22. Muddana HS, Morgan TT, Adair JH, Butler PJ. Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Letters 2009; 9 (4): 1559-1566. doi: 10.1021/nl803658w
  • 23. Yan F, Fan K, Bai Z, Zhang R, Zu F et al. Fluorescein applications as fluorescent probes for the detection of analytes. TrAC Trends in Analytical Chemistry 2017; 97: 15-35. doi:10.1016/j.trac.2017.08.013
  • 24. Adinolfi B, Pellegrino M, Giannetti A, Tombelli S, Trono C et al. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosensors and Bioelectronics 2017; 88: 15-24. doi: 10.1016/j.bios.2016.05.102
  • 25. Karstens T, Kobs K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. Journal of Physical Chemistry 1980; 84 (14): 1871-1872. doi: 10.1021/j100451a030
  • 26. Ali MA, Moghaddasi J, Ahmed SA. Optical properties of cooled rhodamine B in ethanol. Journal of the Optical Society of America B1991; 8 (9): 1807. doi: 10.1364/josab.8.001807
  • 27. Jiao Y, Zhou L, He H, Yin J, Gao Q et al. A novel rhodamine B-based “off-on” fluorescent sensor for selective recognition of copper (II) ions. Talanta 2018; 184: 143-148. doi: 10.1016/j.talanta.2018.01.073
  • 28. Diallo-Garcia S. Les Hydroxyapatites, un système basique atypique modulable par la synthèse: vers l’identification des sites actifs, MSc, Pierre and Marie Curie University - Paris VI, Paris, France, 2012 (in French).
  • 29. Kivrak N, Taş AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. Journal of the American Ceramic Society 2005; 81 (9): 2245-2252. doi: 10.1111/j.1151-2916.1998.tb02618.x
  • 30. Saxena A, Sachin K, Bohidar HB, Verma AK. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces 2005; 45 (1): 42-48. doi: 10.1016/j.colsurfb.2005.07.005
  • 31. Hu Q, Tan Z, Liu Y, Tao J, Cai Y et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry 2007; 17 (44): 4690. doi: 10.1039/b710936a
  • 32. Hesse A, Heimbach D. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World Journal of Urology 1999; 17 (5): 308-315. doi: 10.1007/s003450050152
  • 33. Stutman JM, Termine JD, Posner AS. Vibrational spectra and structure of the phosphate ion in some calcium phosphates. Transactions of the New York Academy of Sciences 1965; 27 (6 Series II): 669-675. doi: 10.1111/j.2164- 0947.1965.tb02224.x
  • 34. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research 2002; 62 (4): 600-612. doi: 10.1002/jbm.10280
  • 35. Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO et al. A calcium hydroxyapatite precipitated from an aqueous solution. Journal of Crystal Growth 1987; 84 (3): 515-532. doi: 10.1016/0022-0248(87)90284-3
  • 36. Giger EV, Puigmartí-Luis J, Schlatter R, Castagner B, Dittrich PS et al. Gene delivery with bisphosphonatestabilized calcium phosphate nanoparticles. Journal of Controlled Release 2011; 150 (1): 87-93. doi: 10.1016/j.jconrel.2010.11.012
  • 37. Jacquart A, Kéramidas M, Vollaire J, Boisgard R, Pottier G et al. LipImage™815: novel dye-loaded lipid nanoparticles for long-term and sensitive in vivonear-infrared fluorescence imaging. Journal of Biomedical Optics 2013; 18 (10): 101311. doi: 10.1117/1.jbo.18.10.101311
  • 38. Han JY, Tan TTY, Loo JSC. Utilizing inverse micelles to synthesize calcium phosphate nanoparticles as nanocarriers. Journal of Nanoparticle Research 2011; 13 (8): 3441-3454. doi: 10.1007/s11051-011-0266-6
  • 39. Vasconcellos KB, McHugh SM, Dapsis KJ, Petty AR, Gerdon AE. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization. Journal of Nanoparticle Research 2013; 15 (9): 1942. doi: 10.1007/s11051-013-1942-5
  • 40. Mohiyuddin S, Naqvi S, Packirisamy G. Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles. Beilstein Journal of Nanotechnology 2018; 9: 2499-2515. doi: 10.3762/bjnano.9.233
  • 41. Wang Z, Liu Y, Jia J, Chen S, Qin W et al. Fabrication of hybridized nanoparticles with aggregation induced emission characteristic and application for cell imaging. Journal of Materials Chemistry B 2016; 4 (31): 5265-5271. doi: 10.1039/C6TB01466F
  • 42. Tenkumo T, Vanegas Sáenz JR, Takada Y, Takahashi M, Rotan O et al. Gene transfection of human mesenchymal stem cells with a nano-hydroxyapatite-collagen scaffold containing DNA-functionalized calcium phosphate nanoparticles. Genes to Cells 2016; 21 (7): 682-695. doi: 10.1111/gtc.12374
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Abidin GÜMRÜKÇÜOĞLU, Aysel BAŞOĞLU, Sevgi KOLAYLI, Saliha DİNÇ, Meryem KARA, Miraç OCAK, Ümmühan OCAK

Synthesis, cytotoxic assessment, and molecular docking studies of 2,6-diaryl-substituted pyridine and 3,4- dihydropyrimidine-2(1H)-one scaffolds

Zahra HOSSEINZADEH, Nima RAZZAGHI ASL, Hamideh AGHAHOSSEINI, Ali RAMAZANI, Ali RAMAZANI

Entrapment of organic fluorophores in calcium phosphate nanoparticles with slow release

Hassan HANNACHE, Said GMOUH, Laila SADALLAH, Aicha BOUKHRISS

Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process

Flor del Rocío HERNÁNDEZ GÓMEZ, Janette ARRIOLA MORALES, Gabriela PÉREZ OSORIO, José Carlos MENDOZA HERNÁNDEZ

Synthesis, spectroscopic studies, and antioxidant activities of novel thio/carbohydrazones and bis-isatin derivatives from terephthalaldehyde

Temel Kan BAKIR, Halit MUĞLU, Hasan YAKAN

Bünyemin ÇOŞUT, Burcu TOPALOĞLU AKSOY, Süreyya Oğuz TÜMAY, Ahmet ŞENOCAK, Serkan YEŞİLOT

Pyrene-BODIPY-substituted novel water-soluble cyclotriphosphazenes: synthesis, characterization, and photophysical properties

Adem KILIÇ, Serkan YEŞİLOT, Seda ÇETİNDERE

Halit MUĞLU, Hasan YAKAN, Temel Kan BAKIR

Esra TANRIVERDİ EÇİK, Hanife İBİŞOĞLU, Gönül YENİLMEZ ÇİFTÇİ, Gizem DEMİR, Eda ERDEMİR, Fatma YÜKSEL

Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties

Ceylan MUTLU BALCI, Serap BEŞLİ, Süreyya Oğuz TÜMAY, Serkan YEŞİLOT, Semih DOĞAN