Enhanced ethanol sensing properties of WO3 modified TiO2 nanorods

Pristine and WO3 decorated TiO2 nanorods (NRs) were synthesised to investigate n-n-type heterojunction gas sensing properties. TiO2 NRs were fabricated via hydrothermal method on fluorine-doped tin oxide coated glass (FTO) substrates. Then, tungsten was sputtered on the TiO2 NRs and thermally oxidised to obtain WO3 nanoparticles. The heterostructure was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Fabricated sensor devices were exposed to VOCs such as toluene, xylene, acetone and ethanol, and humidity at different operation temperatures. Experimental results demonstrated that the heterostructure has better sensor response toward ethanol at 200 degrees C. Enhanced sensing properties are attributed to the heterojunction formation by decorating TiO2 NRs with WO3.

___

  • Alev O, 2020, J ALLOY COMPD, V826, DOI 10.1016/j.jallcom.2020.154177
  • Alev O, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18040956
  • Alev O, 2018, J ALLOY COMPD, V749, P221, DOI 10.1016/j.jallcom.2018.03.268
  • Alev O, 2015, PROCEDIA ENGINEER, V120, P1162, DOI 10.1016/j.proeng.2015.08.747
  • Ali H, 2014, ELECTROCHIM ACTA, V150, P314, DOI 10.1016/j.electacta.2014.10.142
  • Altomare M, 2018, ADV FUNCT MATER, V28, DOI 10.1002/adfm.201704259
  • Astinchap B, 2017, MAT SCI SEMICON PROC, V63, P169, DOI 10.1016/j.mssp.2017.02.007
  • Avansi W, 2019, ACS APPL NANO MATER, V2, P4756, DOI 10.1021/acsanm.9b00578
  • Banerjee AN, 2011, NANOTECHNOL SCI APPL, V4, P35, DOI 10.2147/NSA.S9040
  • Blohm A, 2020, MICRO NANO TECHNOL, P251, DOI 10.1016/B978-0-12-815882-1.00006-9
  • Buszewski B, 2007, BIOMED CHROMATOGR, V21, P553, DOI 10.1002/bmc.835
  • Cernosek T, 2020, J FORENSIC SCI, V65, P134, DOI 10.1111/1556-4029.14173
  • Cui P, 2020, J CLEAN PROD, V244, DOI 10.1016/j.jclepro.2019.118757
  • Deng JA, 2014, J MATER CHEM A, V2, P9030, DOI 10.1039/c4ta00160e
  • Depero LE, 1996, SENSOR ACTUAT B-CHEM, V36, P381, DOI 10.1016/S0925-4005(97)80100-1
  • Elostua C, 2006, SENSOR ACTUAT B-CHEM, V115, P444, DOI 10.1016/j.snb.2005.10.014
  • Feng X, 2008, NANO LETT, V8 .
  • Fu ZH, 2020, CATAL SURV ASIA, V24, P38, DOI 10.1007/s10563-019-09288-y
  • Guha PK, 2020, WOODH PUB SER ELECT, P465, DOI 10.1016/B978-0-08-102559-8.00014-8
  • Harish Suryawanshi, 2018, International Journal for Research in Applied Science and Engineering Technology, V6, P48, DOI 10.22214/ijraset.2018.4011
  • JONES AW, 1985, J ANAL TOXICOL, V9, P246, DOI 10.1093/jat/9.6.246
  • Kanda K, 2005, SENSOR ACTUAT B-CHEM, V108, P97, DOI 10.1016/j.snb.2005.01.038
  • Kim KH, 2012, TRAC-TREND ANAL CHEM, V33, P1, DOI 10.1016/j.trac.2011.09.013
  • Kohl D, 2001, J PHYS D APPL PHYS, V34, pR125, DOI 10.1088/0022-3727/34/19/201
  • Lai CW, 2013, INT J HYDROGEN ENERG, V38, P2156, DOI 10.1016/j.ijhydene.2012.12.025
  • Lee DS, 2000, SENSOR ACTUAT B-CHEM, V65, P331, DOI 10.1016/S0925-4005(99)00441-4
  • Lee JH, 2020, SENSOR ACTUAT B-CHEM, V302, DOI 10.1016/j.snb.2019.127196
  • Lin CW, 2016, THIN SOLID FILMS, V618, P73, DOI 10.1016/j.tsf.2016.05.013
  • Liu L, 2010, SENSOR ACTUAT B-CHEM, V150, P806, DOI 10.1016/j.snb.2010.07.022
  • Liu PF, 2016, J MATER CHEM A, V4, P9578, DOI 10.1039/c6ta04078k
  • Liu YL, 2014, SENSOR ACTUAT B-CHEM, V191, P537, DOI 10.1016/j.snb.2013.10.068
  • Liu Y, 2008, ATMOS ENVIRON, V42, P6247, DOI 10.1016/j.atmosenv.2008.01.070
  • Liu Y, 2011, J HAZARD MATER, V196, P52, DOI 10.1016/j.jhazmat.2011.08.067
  • Lyson-Sypien B, 2017, BEILSTEIN J NANOTECH, V8, P108, DOI 10.3762/bjnano.8.12
  • Manisalidis I, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00014
  • Maziarz W, 2016, BEILSTEIN J NANOTECH, V7, P1718, DOI 10.3762/bjnano.7.164
  • Meng WW, 2016, ELECTROCHIM ACTA, V193, P302, DOI 10.1016/j.electacta.2016.02.028
  • Miller DR, 2014, SENSOR ACTUAT B-CHEM, V204, P250, DOI 10.1016/j.snb.2014.07.074
  • Mirzaei A, 2016, CERAM INT, V42, P15119, DOI 10.1016/j.ceramint.2016.06.145
  • Moseley PT, 2017, MEAS SCI TECHNOL, V28, DOI 10.1088/1361-6501/aa7443
  • Nabizadeh R, 2020, SUSTAIN CITIES SOC, V56, DOI 10.1016/j.scs.2019.102005
  • Pekey B, 2011, MICROCHEM J, V97, P213, DOI 10.1016/j.microc.2010.09.006
  • Popov TA, 2011, ANN ALLERG ASTHMA IM, V106, P451, DOI 10.1016/j.anai.2011.02.016
  • Prabhu S, 2014, MATER SCI FORUM, V781, P63, DOI 10.4028/www.scientific.net/MSF.781.63
  • Sarica N, 2019, THIN SOLID FILMS, V685, P321, DOI 10.1016/j.tsf.2019.06.046
  • Sennik E, 2016, SENSOR ACTUAT B-CHEM, V229, P692, DOI 10.1016/j.snb.2016.01.089
  • Sennik E, 2014, J ALLOY COMPD, V616, P89, DOI 10.1016/j.jallcom.2014.07.097
  • Sennik E, 2014, SENSOR ACTUAT B-CHEM, V199, P424, DOI 10.1016/j.snb.2014.03.052
  • Seo MH, 2011, J CERAM SOC JPN, V119, P884, DOI 10.2109/jcersj2.119.884
  • Sureshkumar N, 2020, MULTILAYER THIN FILM
  • Tang K, 2020, ELECTROCHIM ACTA, V330, DOI 10.1016/j.electacta.2019.135189
  • Teleki A, 2006, SENSOR ACTUAT B-CHEM, V119, P683, DOI 10.1016/j.snb.2006.01.027
  • Vallejos S, 2008, SENSOR ACTUAT B-CHEM, V132, P209, DOI 10.1016/j.snb.2008.01.044
  • Walker JM, 2019, SENSOR ACTUAT B-CHEM, V286, P624, DOI 10.1016/j.snb.2019.01.049
  • Wang Y, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17091971
  • Wollenstein J, 2003, SENSOR ACTUAT B-CHEM, V93, P442, DOI 10.1016/S0925-4005(03)00168-0
  • Wu CH, 2015, SENSOR ACTUAT B-CHEM, V211, P354, DOI 10.1016/j.snb.2015.01.048
  • Xiao GN, 2017, CERAM INT, V43, P12534, DOI 10.1016/j.ceramint.2017.06.126
  • Xie YL, 2006, ATMOS ENVIRON, V40, P3070, DOI 10.1016/j.atmosenv.2005.12.065
  • XU CN, 1991, SENSOR ACTUAT B-CHEM, V3, P147, DOI 10.1016/0925-4005(91)80207-Z
  • Yao YG, 2019, J MATER RES TECHNOL, V8, P3580, DOI 10.1016/j.jmrt.2019.05.016
  • Zanetti SM, 2014, SENSOR ACTUAT B-CHEM, V190, P40, DOI 10.1016/j.snb.2013.08.053
  • Zappa D, 2018, ANAL CHIM ACTA, V1039, P1, DOI 10.1016/j.aca.2018.09.020
  • Zhu LB, 2018, 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), P26, DOI 10.1109/ICCIA.2018.00013