Electrophoretic deposition and characterization of self-doped SrTiO3 thin films

Herein, titanium (Ti3+) self-doped strontium titanate (SrTiO3), so-called blue SrTiO3, with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce SrTiO3 thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue SrTiO3 reveals lower resistance (charge transfer resistance of 6.38 Omega cm(-2)) and higher electron mobility (current density value of 0.25 mA cm(-2)) compared to a pure SrTiO3 electrode. These findings may provide new insights for developing high-performance visible light photocatalysts.

___

  • Ariyanti D, 2017, MATER CHEM PHYS, V199, P571, DOI 10.1016/j.matchemphys.2017.07.054
  • Armor JN, 1999, APPL CATAL A-GEN, V176, P159, DOI 10.1016/S0926-860X(98)00244-0
  • Chen W, 2016, APPL CATAL B-ENVIRON, V192, P145, DOI 10.1016/j.apcatb.2016.03.057
  • Dong ZB, 2018, APPL SURF SCI, V443, P321, DOI 10.1016/j.apsusc.2018.03.031
  • FUJISHIMA A, 1972, NATURE, V238, P37, DOI 10.1038/238037a0
  • Hong YZ, 2017, INT J HYDROGEN ENERG, V42, P6738, DOI 10.1016/j.ijhydene.2016.12.055
  • Hou XG, 2016, MATER LETT, V176, P270, DOI 10.1016/j.matlet.2016.04.139
  • Jia QX, 2012, P NATL ACAD SCI USA, V109, P11564, DOI 10.1073/pnas.1204623109
  • Klusackova M, 2019, ELECTROCHIM ACTA, V297, P215, DOI 10.1016/j.electacta.2018.11.185
  • Kudo A, 2013, AIP CONF PROC, V1568, P7, DOI 10.1063/1.4848079
  • Kudo A, 2009, CHEM SOC REV, V38, P253, DOI 10.1039/b800489g
  • Liu JW, 2006, J SOLID STATE CHEM, V179, P3704, DOI 10.1016/j.jssc.2006.08.014
  • Liu XB, 2016, RSC ADV, V6, P9581, DOI 10.1039/c5ra21516a
  • Liu Y, 2008, J POWER SOURCES, V183, P701, DOI 10.1016/j.jpowsour.2008.05.057
  • Maeda K, 2007, J PHYS CHEM C, V111, P7851, DOI 10.1021/jp070911w
  • Mishra V, 2018, MATER RES EXPRESS, V5, DOI 10.1088/2053-1591/aab6f5
  • Navarro RM, 2007, CHEM REV, V107, P3952, DOI 10.1021/cr0501994
  • Yerga RMN, 2009, CHEMSUSCHEM, V2, P471, DOI 10.1002/cssc.200900018
  • Osterloh FE, 2008, CHEM MATER, V20, P35, DOI 10.1021/cm7024203
  • Pan SH, 2019, MATER RES EXPRESS, V6, DOI 10.1088/2053-1591/ab17b8
  • Patial S, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103791
  • Peighambardoust NS, 2018, ELECTROCHIM ACTA, V270, P245, DOI 10.1016/j.electacta.2018.03.091
  • Sangle AL, 2016, NANO LETT, V16, P7338, DOI 10.1021/acs.nanolett.6b02487
  • Sivula K, 2011, CHEMSUSCHEM, V4, P432, DOI 10.1002/cssc.201000416
  • Sulaeman U, 2010, J NANOMATER, V2010, DOI 10.1155/2010/629727
  • Suzuki S, 2020, CATAL SCI TECHNOL, V10, P4912, DOI 10.1039/d0cy00600a
  • Swierk JR, 2016, ACS ENERGY LETT, V1, P603, DOI 10.1021/acsenergylett.6b00279
  • Tan HQ, 2014, ACS APPL MATER INTER, V6, P19184, DOI 10.1021/am5051907
  • Trimm DL, 2001, CATAL REV, V43, P31, DOI 10.1081/CR-100104386
  • Wang DW, 2003, J PHYS CHEM B, V107, P4963, DOI [10.1021/jp034229n, DOI 10.1021/JP034229N]
  • Yamasita D, 2004, SOLID STATE IONICS, V172, P591, DOI 10.1016/j.ssi.2004.04.033
  • Yi Yang, 2016, Solid State Phenomena, V253, P11, DOI 10.4028/www.scientific.net/SSP.253.11
  • Zwara J, 2019, INT J HYDROGEN ENERG, V44, P26308, DOI 10.1016/j.ijhydene.2019.08.094