Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles

The physical and chemical properties of bimetallic nanoparticles can be optimized by tuning the particle composition. In this study, we identified CO adsorption and dissociation energetics on five Pt-Mo nanoparticles at different concentrations, the lowest energy Pt-7, Pt6Mo, Pt5Mo2, Pt4MO3, and Mo-7 clusters. We have shown that the CO adsorption and dissociation energies and preferred CO adsorption sites are largely dependent on the composition of the nanoparticles. As the Mo concentration increases, the strength of the C-O internal bond in the adsorption complex decreases, as indicated by a decrease in the C-O stretching frequency. Also, more Mo sites in the nanoparticle become available for CO adsorption, and the preferred CO adsorption site switches from Pt to Mo. For these reasons, dissociation of CO is energetically favorable on Pt4MO3 and Mo-7. On both compositions, we have shown that the dissociation paths begin with CO adsorbed on a Mo site in a multifold configuration, in particular in a tilted configuration. These findings provide insight on the effects of the composition on the chemical and catalytical properties of Pt-Mo nanoparticles, thereby guiding future experiments on the synthesis of nanoparticles, especially those that may be suitable for various desired applications containing CO.

___

  • Aiken JD, 1999, J MOL CATAL A-CHEM, V145, P1, DOI 10.1016/S1381-1169(99)00098-9
  • Airola MB, 2002, J CHEM PHYS, V116, P1313, DOI 10.1063/1.1428753
  • Apra E, 2000, J MOL STRUC-THEOCHEM, V501, P251, DOI 10.1016/S0166-1280(99)00436-4
  • Bilodeau RC, 2000, PHYS REV A, V61, DOI 10.1103/PhysRevA.61.012505
  • Chaves AS, 2014, J PHYS CHEM A, V118, P10813, DOI 10.1021/jp508220h
  • COLAIANNI ML, 1992, J AM CHEM SOC, V114, P3735, DOI 10.1021/ja00036a024
  • Crabb EM, 2002, ELECTROCHEM SOLID ST, V5, pA5, DOI 10.1149/1.1419703
  • Doye JPK, 1997, Z PHYS D ATOM MOL CL, V40, P194, DOI 10.1007/s004600050192
  • Du JG, 2008, INT J QUANTUM CHEM, V108, P1505, DOI 10.1002/qua.21684
  • Du YX, 2020, CHEM REV, V120, P526, DOI 10.1021/acs.chemrev.8b00726
  • EFREMOV YM, 1978, J MOL SPECTROSC, V73, P430, DOI 10.1016/0022-2852(78)90109-1
  • ERMAN P, 1993, CHEM PHYS LETT, V215, P173, DOI 10.1016/0009-2614(93)89283-N
  • Fabbi JC, 2001, J CHEM PHYS, V115, P7543, DOI 10.1063/1.1407273
  • FEIGERLE CS, 1981, J CHEM PHYS, V74, P1580, DOI 10.1063/1.441289
  • Ferrando R, 2008, CHEM REV, V108, P845, DOI 10.1021/cr040090g
  • Ferrari P, 2017, CHEM-EUR J, V23, P4120, DOI 10.1002/chem.201604894
  • Figgen D, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3119665
  • FULMER JP, 1987, J CHEM PHYS, V87, P7265, DOI 10.1063/1.453372
  • GIBSON ND, 1993, J CHEM PHYS, V98, P5104, DOI 10.1063/1.464935
  • GOYMOUR CG, 1973, J CHEM SOC FARAD T 1, V69, P749, DOI 10.1039/f19736900749
  • Grassian VH, 2008, J PHYS CHEM C, V112, P18303, DOI 10.1021/jp806073t
  • Gruene P, 2008, PHYS CHEM CHEM PHYS, V10, P6144, DOI 10.1039/b808341j
  • GUPTA SK, 1981, INORG CHEM, V20, P966, DOI 10.1021/ic50218a004
  • Heiz U, 1999, EUR PHYS J D, V9, P35, DOI 10.1007/s100530050395
  • HO J, 1993, J CHEM PHYS, V99, P8542, DOI 10.1063/1.465577
  • HOPKINS JB, 1983, J CHEM PHYS, V78, P1627, DOI 10.1063/1.444961
  • Hossain E, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3073855
  • Huber, 2013, MOL SPECTRA MOL STRU .
  • Ioroi T, 2002, ELECTROCHEM COMMUN, V4, P442, DOI 10.1016/S1388-2481(02)00341-7
  • Isomura N, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3251786
  • Jellinek J, 2008, FARADAY DISCUSS, V138, P11, DOI 10.1039/b800086g
  • Kumar V, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.205418
  • LEWIS KE, 1984, J AM CHEM SOC, V106, P3905, DOI 10.1021/ja00326a004
  • LI R, 2017, COMPUT THEOR CHEM, V1107, P136
  • LINSEBIGLER A, 1993, SURF SCI, V294, P284, DOI 10.1016/0039-6028(93)90115-Z
  • Liu LC, 2018, CHEM REV, V118, P4981, DOI 10.1021/acs.chemrev.7b00776
  • Lordeiro RA, 2003, INT J QUANTUM CHEM, V95, P112, DOI 10.1002/qua.10660
  • Manceron L, 2000, J PHYS CHEM A, V104, P3750, DOI 10.1021/jp9938819
  • MARIJNISSEN A, 1995, PHYS REV A, V52, P2606, DOI 10.1103/PhysRevA.52.2606
  • McNamara K, 2017, ADV PHYS-X, V2, P54, DOI 10.1080/23746149.2016.1254570
  • MICHELS GD, 1980, INORG CHEM, V19, P479, DOI 10.1021/ic50204a039
  • Min BJ, 2015, J KOREAN PHYS SOC, V66, P209, DOI 10.3938/jkps.66.209
  • MORSE MD, 1986, CHEM REV, V86, P1049, DOI 10.1021/cr00076a005
  • PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244
  • Peterson KA, 2007, J CHEM PHYS, V126, DOI 10.1063/1.2647019
  • RAUH EG, 1979, J CHEM PHYS, V70, P1004, DOI 10.1063/1.437531
  • ROSZAK S, 1995, J CHEM PHYS, V103, P1043, DOI 10.1063/1.469814
  • Santos CSC, 2015, MATER TODAY-PROC, V2, P456, DOI 10.1016/j.matpr.2015.04.056
  • Scheijen FJE, 2007, J PHYS CHEM C, V111, P13473, DOI 10.1021/jp072673a
  • Shubina TE, 2002, ELECTROCHIM ACTA, V47, P3621, DOI 10.1016/S0013-4686(02)00332-8
  • Simard B, 1998, J CHEM PHYS, V108, P9668, DOI 10.1063/1.476442
  • Stoddart A, 2018, NAT REV MATER, V3, P3, DOI 10.1038/s41578-018-0012-0
  • Suo CG, 2014, AIP ADV, V4, DOI 10.1063/1.4869617
  • TAYLOR S, 1988, J CHEM PHYS, V89, P5517, DOI 10.1063/1.455577
  • Tian XX, 2017, PHYS CHEM CHEM PHYS, V19, P2186, DOI 10.1039/c6cp08129k
  • Ugalde-Reyes O, 2015, J ELECTROCHEM SOC, V162, pH132, DOI 10.1149/2.0521503jes
  • Valiev M, 2010, COMPUT PHYS COMMUN, V181, P1477, DOI 10.1016/j.cpc.2010.04.018
  • ZAERA F, 1985, CHEM PHYS LETT, V121, P464, DOI 10.1016/0009-2614(85)87214-6
  • Zhang WQ, 2004, J CHEM PHYS, V121, P7717, DOI 10.1063/1.1790911
  • Ziane M, 2017, J NANOPART RES, V19, DOI 10.1007/s11051-017-4072-7