Effect of various g-C3N4 precursors on the catalytic performance of alkylorganotin-based catalysts in acetylene hydrochlorination

A series of alkylorganotin-based catalysts Sn-g-C$_{3}$N$_{4}$/AC was prepared by wet impregnation in ethanol using different g-C$_{3}$N$_{4}$ precursors and alkylorganotin compounds. The structure, texture, surface composition, and adsorption properties of the as-prepared catalysts were extensively characterized. Then, the obtained samples were evaluated for their catalytic performance in hydrochlorination of acetylene. The results provided by the X-ray photoelectron spectroscopy, acetylene temperature-programmed desorption, and HCl adsorption confirmed the nature of the active sites i.e. Sn-N$_{x}$ involved in the reactant adsorption, and hence in the improved catalytic performance. These active sites were also related to the improved lifetime of alkylorganotin-based catalysts in the hydrochlorination of acetylene. At a constant reaction temperature of 200 °C with an acetylene gas hourly space velocity C2H2-GHSV of 30 h$^{-1}$, Sn-g$_{1}$ -C$_{3}$N$_{4}$/AC-550 exhibited the highest acetylene conversion ~98.0% and selectivity toward the vinyl chloride monomer >98.0% . From the catalytic test results, it was reasonably concluded that the hexamethylenetetramine is the most suitable N precursor, as compared to the dicyandiamide and urea, to prepare high-performance catalysts. From the BET specific surface area of fresh and used catalysts, it was suggested that, in contrast to dicyandiamide and urea, hexamethylenetetramine could delay the deposition of coke on alkylorganotin-based catalysts, which is reflected by the extended lifetime.

___

  • 1. Goodman SR. An overview of PVC compounds for wire and cable applications. Wire Journal International 2000; 33 (4): 214-218. doi:10.1002/vnl.730050211
  • 2. Schobert H. Production of acetylene and acetylene-based chemicals from coal. Chemical reviews 2013; 114 (3): 1743-1760. doi:10.1021/cr400276u
  • 3. Agnew JB, Shankar HS. Catalyst deactivation in acetylene hydrochlorination. Industrial & engineering chemistry product research and development 1986; 25 (1): 19-22. doi:10.1021/i300021a005
  • 4. Lin R, Amrute AP, Pérezramírez J. Halogen-mediated conversion of hydrocarbons to commodities. Chemical Reviews 2017; 117 (5): 4182-4247. doi: 10.1021/acs.chemrev.6b00551
  • 5. Johnston P, Carthey N, Hutchings GJ. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. Journal of the American Chemical Society 2016; 47 (9): 14548-14557. doi: 10.1021/jacs.5b07752
  • 6. Hutchings GJ. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 2008; 48 (1-4): 55-59. doi: 10.1007/s11244-008-9048-5
  • 7. Malta G, Kondrat SA, Freakley SJ, Davies CJ, Lu L et al. Identification of single-site gold catalysis in acetylene hydrochlorination Science 2017; 355 (6332): 1399-1403. doi: 10.1126/science.aal3439
  • 8. Conte M, Carley AF, Hutchings GJ. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters 2008; 124 (3-4): 165-167. doi: 10.1007/s10562-008-9583-5
  • 9. Hutchings GJ. Heterogeneous gold catalysis. ACS Central Science 2018; 4 (9): 1095-1101. doi: 10.1021/acscentsci.8b00306
  • 10. Ye L, Duan X, Wu S, Wu T, Zhao Y et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature communications 2019; 10 (1): 914. doi: 10.1038/s41467- 019-08827-5
  • 11. Xiong Q, Wu G, Leng S, Xiong Z, Hu Z et al. Preparation and optimization of mercury-free catalyst for synthesis of vinyl chloride from acetylene. Modern Chemical Industry 2017; 37 (11): 66-69. doi: 10.16606/j.cnki.issn02534320.2017.11.015
  • 12. Deng G, Wu B, Li T, Liu G, Wang L. Preparation of solid phase non-mercury catalyst for synthesis of vinyl chloride by acetylene method. Polyvinyl chloride 1994; 6: 5-9 (http://www.cnki.com.cn/Article/CJFDTotal-JLYA199406001.htm)
  • 13. Guo Y, Liu Y, Hu R, Gao G, Sun H. Preparation and optimization of SnCl 2 -ZnCl 2 /C mercury-free acetylene hydrochlorination catalyst. Chinese Journal of Applied Chemistry 2014; 31 (5): 624-626.
  • 14. Wu Y, Li B, Li F, Xue J, Lv Z. Synthesis and characteristics of organotin-based catalysts for acetylene hydrochlroination. Canadian Journal of Chemistry 2018; 96(5): 447-452. doi: 10.1139/cjc-2017-0612
  • 15. Li H, Wang F, Cai W, Zhang J, Zhang X. Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts. Catalysis Science & Technology 2015; 5 (12): 5174-5184. doi: 10.1039.C5CY00751H
  • 16. Zhao W, Zhu M, Dai, B. The Preparation of Cu-g-C3 N4 /AC catalyst for acetylene hydrochlorination. Catalysts 2016; 6 (12): 193. doi: 10.3390/catal6120193
  • 17. Xu J, Zhao J, Zhang T, Di X, Gu S et al. Ultra-low Ru-promoted CuCl 2 as highly active catalyst for the hydrochlorination of acetylene. RSC Advances 2015; 5 (48): 38159-38163. doi: 10.1039/C5RA03094C
  • 18. Wang X, Zhu M, Dai B. Effect of phosphorus ligand on Cu-Based catalysts for acetylene hydrochlorination. ACS Sustainable Chemistry & Engineering 2019; 7 (6): 6170-6177. doi: 10.1021/acssuschemeng.8b06379
  • 19. Ren Y, Wu B, Wang F, Li H, Lv G et al. Chlorocuprate (i) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene. Catalysis Science & Technology 2019; 9: 2868-2878. doi: 10.1039/C9CY00401G
  • 20. Zhai Y, Zhao J, Di X, Wang B, Yue Y et al. Carbon supported perovskite-like CsCuCl 3 nanoparticles: a highly active and cost-effective heterogeneous catalyst in the hydrochlorination of acetylene to vinyl chloride. Catalysis Science & Technology 2018; 8 (11): 2901-2908. doi: 10.1039.C8CY00291F
  • 21. Li X, Wang Y, Kang L, Zhu M, Dai B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. Journal of Catalysis 2014; 311 (3): 288-294. doi: 10.1016/j.jcat.2013.12.006
  • 22. Zhao J, Wang B, Yue Y, Sheng G, Lai H et al. Nitrogen-and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. Journal of Catalysis 2019; 373: 240-249. doi: 10.1016/j.jcat.2019.03.044
  • 23. Dong X, Chao S, Wan F, Guan Q, Wang G et al. Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. Journal of Catalysis 2018; 359: 161-170. doi: 10.1016/j.jcat.2017.12.016
  • 24. Dai B, Chen K, Wang Y, Kang L, Zhu M. Boron and nitrogen doping in grapheme for the catalysis of acetylene hydrochlorination. ACS Catalysis 2015; 5 (4): 2541-2547. doi: 10.1021/acscatal.5b00199
  • 25. Bulatović MZ, Maksimović-Ivanić D, Bensing C, Gómez-Ruiz S, Steinborn D et al. Organotin(IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angewandte Chemie International Edition 2014; 53 (23): 5982-5987. doi: 10.1002/anie.201400763
  • 26. Shah M, Ali S, Tariq M, Khalid N, Ahmad F et al. Catalytic conversion of jojoba oil into biodiesel by organotin catalysts, spectroscopic and chromatographic characterization. Fuel 2014; 118 (1): 392-397.doi: 10.1016/j.fuel.2013.11.010
  • 27. Starnes WH, Plitz IM. Correction-chemical stabilization of Poly(vinyl chloride) by prior reaction with Di(n-butyl) tin Bis(ndodecylmercaptide). Macromolecules 1976; 9 (4): 878-878. doi: 10.1021/ma60053a039
  • 28. Hoch M. Organotin compounds in the environment-an overview. Applied Geochemistry 2001; 16 (7-8): 719-743. doi:10.1016/S0883-2927(00)00067-6
  • 29. da Silva MA, dos Santos ASS, dos Santos TV, Meneghetti MR, Meneghetti SMP et al. Organotin (iv) compounds with high catalytic activities and selectivities in the glycerolysis of triacylglycerides. Catalysis Science & Technology 2017; 7 (23):5750-5757. doi: 10.1039/C7CY01559C
  • 30. Zhou K, Li B, Zhang Q, Huang J, Tian G et al. The Catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes. ChemSusChem 2014; 7 (3): 723-728. doi: 10.1002/cssc.201300793
  • 31. Jiang L, Yuan X, Pan Y, Liang J, Zeng G et al. Doping of graphitic carbon nitride for photocatalysis: a review. Applied Catalysis B: Environmental 2017; 217: 388-406. doi: 10.1016/j.apcatb.2017.06.003
  • 32. Zheng Y, Lin L, Wang B, Wang X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie International Edition 2015; 54 (44): 12868-12884. doi: 10.1002/anie.201501788
  • 33. Xu J, Chen T, Wang X. Preparation of mesoporous graphitic carbon nitride using hexamethylenetetramine as a new precursor and catalytic application in the transesterification of β -keto esters. Catalysis Science & Technology 2014; 4 (7): 2126-2133. doi: 10.1039/C4CY00183D
  • 34. Liu J, Zhang T, Wang Z, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry 2011; 21 (38): 14398-14401.doi: 10.1039/C1JM12620B
  • 35. Wang X, Maeda K, Thomas A, Takanabe K, Xin G et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. NatureMaterials 2009; 8 (1): 76-80. doi: 10.1038/nmat2317
  • 36. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis 2012; 2 (5): 781-794. doi: 10.1021/cs200652y
  • 37. Groenewolt M, Antonietti M. Synthesis of g-C3 N4 nanoparticles in mesoporous silica host matrices. Advanced Materials 2005; 17 (14): 1789-1792. doi: 10.1002/adma.200401756
  • 38. Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller JO et al. ChemInform Abstract: graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 2008; 18 (41): 4893-4908. doi: 10.1039/b800274f
  • 39. Kouvetakis J, Todd M, Wilkens B, Cave N. Novel synthetic routes to carbon-nitrogen thin films. Chemistry of Materials 1994; 6 (6): 811-814. doi: 10.1021/cm00042a018
  • 40. Jürgens B, Irran E, Senker J, Peter K, Müller H et al. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:? synthesis, structure determination by X-ray powder diffractometry, solid-State NMR, and theoretical studies. Journal of the American Chemical Society 2003; 125 (34): 10288-10300. doi: 10.1021/ja0357689
  • 41. Zhang H, Li W, Jin Y, Sheng W, Hu M et al. Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental 2016; 189: 56. doi: 10.1016/j.apcatb.2016.02.030
  • 42. Li X, Pan X, Yu L, Ren P, Wu X et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Communications 2014; 5: 3688. doi: 10.1038/ncomms4688
  • 43. Dong Y, Zhang H, Li W, Sun M, Guo C et al. Bimetallic Au-Sn/AC catalysts for acetylene hydrochlorination. Journal of Industrial & Engineering Chemistry 2016; 35: 177-184. doi: 10.1016/j.jiec.2015.12.031
  • 44. Nkosi B, Coville NJ, Hutchings GJ. Reactivation of a supported gold catalyst for acetylene hydrochlorination. Journal of the Chemical Society Chemical Communications 1988; (1): 71-72. doi: 10.1039/C39880000071
  • 45. Nkosi B, Adams MD, Coville N J, Hutchings GJ. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. Journal of Catalysis 1991; 128 (2): 378-386. doi: 10.1016/0021-9517(91)90296- G
  • 46. Li X, Li P, Pan X, Ma H, Bao X. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Applied Catalysis B Environmental 2017; 210: 116-120. doi: 10.1016/j.apcatb.2017.03.046
  • 47. Zhang H, Dai B, Li W, Wang X, Zhang J et al. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(III)-Cu(II) catalysts. Journal of Catalysis 2014; 316 (7): 141-148. doi: 10.1016/j.jcat.2014.05.005
  • 48. Zhang H, Dai B, Wang X, Li W, Han Y et al. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(III)/SAC catalysts for vinyl chloride monomer production. Green Chemistry 2013; 15 (3): 829-836. doi: 10.1039/C3GC36840H
  • 49. Furlani C, Mattogno G, Polzonetti G, Rivarola E, Silvestri A. Relationship between XPS core binding energies and atomic charge in adducts of Sn IV derivatives with pyrazine, and comparison with mössbauer isomer shift data. Inorganica Chimica Acta 1981; 52: 23-28. doi: 10.1016/S0020-1693(00)88566-7
  • 50. Willemen H, Van De Vondel DF, Van Der Kelen GP. An ESCA study of tin compounds. Inorganica Chimica Acta 1979; 34: 175-180. doi: 10.1016/S0020-1693(00)94698-X
  • 51. Cao Y, He T, Zhao L, Wang E, Yang W. Structure and phase transition behavior of Sn 4+ -doped TiO2 nanoparticles. The Journal of Physical Chemistry C 2009; 113 (42): 18121-18124. doi: 10.1021/jp9069288
  • 52. Maruyama T, Morishita T. Tin nitride thin films prepared by radio-frequency reactive sputtering. Journal of Applied Physics 1995; 77 (12): 6641-6645. doi: 10.1063/1.359075
  • 53. Lewin E, Patscheider J. Structure and properties of sputter-deposited Al-Sn-N thin films. Journal of Alloys & Compounds 2016; 682: 42-51. doi: 10.1016/j.jallcom.2016.04.278
  • 54. Inoue Y, Nomiya M, Takai O. Physical properties of reactive sputtered tin-nitride thin films. Vacuum 1998; 51 (4): 673-676. doi: 10.1016/S0042-207X(98)00271-1
  • 55. Zhou K, Li B, Zhang Q, Huang J, Tian G et al. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes. ChemSusChem 2014; 7 (3): 723-728. doi: 10.1002/cssc.201300793
  • 56. Horikawa T, Sakao N, Sekida T, Hayashi J, Do DD et al. Preparation of nitrogen- doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 2012; 50 (5): 1833-1842. doi: 10.1016/j.carbon.2011.12.033
  • 57. Wang D, Li F, Yin L, Lu X, Zhi G et al. Nitrogen-doped carbon monolith for alkaline super capacitors and understanding nitrogen-induced redox transitions. Chemistry-A European Journal 2012; 18 (17): 5345-5351. doi: 10.1002/chem.201102806
  • 58. Kowalewska E, Błaz°ejowski J. Thermochemical properties of H2 SnCl 6 complexes. Part I. Thermal behaviour of primary n-alkylammonium hexachlorostannates. Thermochimica Acta 1986; 101: 271-289. doi: 10.1016/0040- 6031(86)80059-4
  • 59. Qiao X, Zhou Z, Liu X, Zhao C, Guan Q et al. Constructing of fragmentary g-C3N4framework with rich nitrogen defects as highly efficient metal-free catalyst for acetylene hydrochlorination. Catalysis Science & Technology 2019; 9: 3753-3762. doi: 10.1039/C9CY00927B
  • 60. Wu Y, Li F, Xue J, Lv Z. Sn-imidazolates supported on boron and nitrogen-doped activated carbon as novel catalysts for acetylene hydrochlorination. Chemical Engineering Communications 2019: 1-13. doi: 0.1080/00986445.2019.1641700