Effect of polyelectrolyte complex formation on the antibacterial activity of copolymer of alkylated 4-vinylpyridine

Polymers bearing quaternized 4-vinylpyridine QVP groups are known for their antibacterial activities and these polymers can form polyelectrolyte complexes PEC with polyanions through electrostatic interactions. PEC formation can be used to adjust the antibacterial activity of polymers of QVP, deliver active molecules, or design antibacterial supramolecular structures. However, the antibacterial activity of PECs of QVP polymers has not been investigated. In this study, a copolymer of QVP was mixed with polyacrylic acid in various molar ratios of components to form PECs. Hydrodynamic diameters and zeta potentials of formed PECs were determined by dynamic and electrophoretic light scattering spectroscopy techniques. The zeta potentials of PECs changed between -24 and $+$16 mV with variation in the ratio of components. Antibacterial assays against E. coli revealed a relation of PEC formation with antibacterial activity since MIC values changed between 125-1000 $\mu $g/mL according to the ratio of components.

___

  • 1. Kadayifci MS, Gokkaya D, Topuzogullari M, Dinçer İşoğlu S, Atabey T et al. Core-crosslinking as a pathway to develop inherently antibacterial polymeric micelles. Journal of Applied Polymer Science 2019; 137 (8): 48393. doi: 10.1002/app.48393
  • 2. Samal SK, Dash M, Vlierberghe SV, Kaplan DL, Chiellini E et al. Cationic polymers and their therapeutic potential. Chemical Society Reviews 2012; 41 (21): 7147-7194. doi: 10.1039/C2CS35094G
  • 3. Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International Journal of Molecular Sciences 2015; 16 (2): 3626-3655. doi: 10.3390/ijms16023626
  • 4. Shandil Y, Chauhan GS, Hyeon J, Sharma RK. Tailoring effect of alkyl chain length and counter anion on antimicrobial behavior of 4-vinyl pyridine-based cationic polymers. Anti-Infective Agents 2015; 13 (1): 78-86. doi: 10.2174/2211352513666141215214442
  • 5. Allison BC, Applegate BM, Youngblood JP. Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules 2007; 8 (10): 2995-2999. doi: 10.1021/bm7004627
  • 6. İşoğlu İA, Demirkan C, Şeker MG, Tuzlakoğlu K, Dinçer İşoğlu S. Antibacterial bilayered skin patches made of HPMA and quaternary poly (4-vinyl pyridine). Fibers and Polymers 2018; 19 (11): 2229-2236. doi: 10.1007/s12221- 018-8480-9
  • 7. Stratton TR, Applegate BM, Youngblood JP. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules 2011; 12 (1): 50-56. doi: 10.1021/bm1009624
  • 8. Stratton TR, Howarter JA, Allison BC, Applegate BM, Youngblood JP. Structure-activity relationships of antibacterial and biocompatible copolymers. Biomacromolecules 2010; 11 (5): 1286-1290. doi: 10.1021/bm1000839
  • 9. Kabanov AV, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjugate Chemistry 1995; 6 (1): 7-20. doi: 10.1021/bc00031a002
  • 10. Hu B, Wang SS, Li J, Zeng XX, Huang QR. Assembly of bioactive peptide-chitosan nanocomplexes. Journal of Physical Chemistry B 2011; 115 (23): 7515-7523. doi: 10.1021/jp2013557
  • 11. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine Drugs 2010; 8 (4): 1305-1322. doi: 10.3390/md8041305
  • 12. San Juan A, Letourneur D, Izumrudov VA. Quaternized poly(4-vinylpyridine)s as model gene delivery polycations: structure-function study by modification of side chain hydrophobicity and degree of alkylation. Bioconjugate Chemistry 2007; 18 (3): 922-928. doi: 10.1021/bc060317+
  • 13. Andrianov AK, Marin A, Roberts BE. Polyphosphazene polyelectrolytes: a link between the formation of noncovalent complexes with antigenic proteins and immunostimulating activity. Biomacromolecules 2005; 6 (3): 1375-1379. doi: 10.1021/bm049329t
  • 14. Falentin-Daudré C, Faure E, Svaldo-Lanero T, Farina F, Jérôme C et al. Antibacterial polyelectrolyte micelles for coating stainless steel. Langmuir 2012; 28 (18): 7233-7241. doi: 10.1021/la3003965
  • 15. Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL et al. Antibacterial activity and biocompatibility of a chitosanγ -poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydrate Research 2010; 345 (12): 1774-1780. doi: 10.1016/j.carres.2010.06.002
  • 16. Lankalapalli S, Kolapalli VRM. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian Journal of Pharmaceutical Sciences 2009; 71 (5): 481-487. doi: 10.4103/0250-474X.58165
  • 17. Pergushov DV, Zezin AA, Zezin AB, Müller AHE. Advanced functional structures based on interpolyelectrolyte complexes. In: Müller M (editor). Polyelectrolyte Complexes in the Dispersed and Solid State I. Heidelberg, Berlin, Germany: Springer, 2014, pp. 173-225. doi: 10.1007/12_2012_182
  • 18. Cooper CL, Dubin PL, Kayitmazer AB, Turksen S. Polyelectrolyte–protein complexes. Current Opinion in Colloid & Interface Science 2005; 10 (1-2): 52-78. doi: 10.1016/j.cocis.2005.05.007
  • 19. Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC. Kinetics of formation and dissolution of weak polyelectrolyte multilayers:?role of salt and free polyions. Langmuir 2002; 18 (14): 5607-5612. doi: 10.1021/la025639q
  • 20. Topuzogullari M. Microwave assisted quaternization of poly(4-vinylpyridine) with 1-bromohexane. Journal of Polymer Research 2018; 25 (8): 188. doi: 10.1007/s10965-018-1581-8
  • 21. Wiśniewska M, Urban T, Grządka E, Zarko VI, Gun’ko VM. Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina. Colloid and Polymer Science 2014; 292: 699-705. doi: 10.1007/s00396-013- 3103-x
  • 22. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th ed. Broth Dilution Procedures (Macrodilution and Microdilution). Pennysylvania, USA: Clinical and Laboratory Standards Institute, 2012.
  • 23. Driva P, Bexis P, Pitsikalis M. Radical copolymerization of 2-vinyl pyridine and oligo(ethylene glycol) methyl ether methacrylates: monomer reactivity ratios and thermal properties. European Polymer Journal 2011; 47 (4): 762-771. doi: 10.1016/j.eurpolymj.2010.09.032
  • 24. Gatica N, Gargallo L, Radić D. 2-vinylpyridine-co-N-vinyl-2-pyrrolidone and 4-vinylpyridine-co-N-vinyl-2-pyrrolidone copolymers: synthesis and reactivity ratios. Polymer International 1998; 45 (3): 285-290. doi: 10.1002/(SICI)1097- 0126(199803)45:33.0.CO;2-E
  • 25. Panov VP, Vorontsov ED, Evdakov VP. Spectroscopic determination of the extent of protonation and alkylation of poly-4-vinylpyridine derivatives. Journal of Applied Spectroscopy (Zhurnal Prikladnoi Spektroskopii) 1975; 23 (1): 111-116. doi: 10.1007/bf00608822
  • 26. Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Applied Microbiology and Biotechnology 2011; 89: 475-492. doi: 10.1007/s00253-010-2920-9
  • 27. Sellenet PH, Allison B, Applegate BM, Youngblood JP. Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules 2007; 8 (1): 19-23. doi: 10.1021/bm0605513
  • 28. Müller M, Starchenko V, Lebovka N, Ouyang W, Keßler B. Preparation and life science applications of polyelectrolyte complex nanoparticles. Current Trends in Polymer Science 2009; 13: 1-10.
  • 29. Kizilay E, Kayitmazer AB, Dubin PL. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Advances in Colloid and Interface Science 2011; 167: 24-37. doi: 10.1016/j.cis.2011.06.006
  • 30. Kabanov VA, Yaroslavov AA, Sukhishvili SA. Interaction of polyions with cell-mimetic species: physico-chemical and biomedical aspects. Journal of Controlled Release 1996; 39 (2): 173-189. doi.org/10.1016/0168-3659(95)00152-2
  • 31. Mustafaev M. Functionally biopolymer systems. Sigma Journal of Engineering and Natural Sciences 2004; 22 (4): 121-160.
  • 32. Trueba FJ, Woldringh CL. Changes in cell diameter during the division cycle of Escherichia coli. Journal of Bacteriology 1980; 142 (3): 869-878.
  • 33. Arasoglu T, Derman S, Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology 2015; 27 (2): 025103. doi: 10.1088/0957-4484/27/2/025103