Design, synthesis, cytotoxic activity, and apoptosis inducing effects of 4-and N-substituted benzoyltaurinamide derivatives

In this study, a group of 4-substituted benzoyltaurinamide derivatives were designed, synthesized, and investigated for their anticancer activity against three cancer cell lines and one nontumorigenic cell line by MTT assay. Among the final compounds, methoxyphenyl derivatives 14, 15, 16 were found to be effective against all the tested cancerous cell lines with promising selectivity. The most active compounds were further evaluated to determine the molecular mechanism of their anticancer activity by using western blot assay and the Annexin V-FITC/PI test. Compound 14 (in SH-SY5Y and MDA-MB-231 cell lines) and 15 (in SH-SY5Y cell line) were found to induce intrinsic apoptotic pathway by upregulating BAX, caspase-3, and caspase-9, while downregulating Bcl-2 and Bcl-xL expression levels. According to mechanistic studies, compounds displayed their anticancer activity via three different mechanisms: a. caspase-dependent, b. caspase-independent, and c. caspase-dependent pathway that excluded caspase-9 activation. As a result, this study provides interesting data which can be used to design new taurine-based anticancer derivatives.

___

  • Akgul O, 2020, BIOORG CHEM, V103, DOI 10.1016/j.bioorg.2020.104236
  • Akgul O, 2017, MARMARA PHARM J, V21, P361, DOI 10.12991/marupj.300894
  • Akgul Z, 2007, ARCH PHARM, V340, P656, DOI 10.1002/ardp.200700166
  • ANDERSEN L, 1984, J PHARM SCI, V73, P106, DOI 10.1002/jps.2600730128
  • Ashkenazi A, 2017, NAT REV DRUG DISCOV, V16, P273, DOI 10.1038/nrd.2016.253
  • Badland M, 2017, TETRAHEDRON LETT, V58, P4391, DOI 10.1016/j.tetlet.2017.10.014
  • Bai LC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099404
  • Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI 10.3322/caac.21492
  • Calabresi P, 2001, CANCER RES, V61, P6816
  • Chen K, 2009, BRAIN RES, V1279, P131, DOI 10.1016/j.brainres.2009.04.054
  • Chen N, 2009, LETT ORG CHEM, V6, P349, DOI 10.2174/157017809788489945
  • Curley OMS, 2003, ARKIVOC, P180, DOI 10.3998/ark.5550190.0004.716
  • Della Corte L, 2002, AMINO ACIDS, V23, P367, DOI 10.1007/s00726-002-0210-2
  • Domracheva I, 2017, LIFE SCI, V186, P92, DOI 10.1016/j.lfs.2017.08.011
  • El Agouza IM, 2011, ANGIOGENESIS, V14, P321, DOI 10.1007/s10456-011-9215-3
  • GUNNARSSON PO, 1989, CANCER CHEMOTH PHARM, V23, P176
  • Gupta RC, 2006, ADV EXP MED BIOL, V583, P449
  • Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  • Ichim G, 2016, NAT REV CANCER, V16, P539, DOI 10.1038/nrc.2016.58
  • Kassab AE, 2018, BIOORG CHEM, V80, P531, DOI 10.1016/j.bioorg.2018.07.008
  • Kiraz Y, 2016, TUMOR BIOL, V37, P8471, DOI 10.1007/s13277-016-5035-9
  • Kontro P, 1983, Prog Clin Biol Res, V125, P211
  • Mansoori B, 2017, ADV PHARM BULL, V7, P339, DOI 10.15171/apb.2017.041
  • Miller E, 1940, J AM CHEM SOC, V62, P2099, DOI 10.1021/ja01865a053
  • Narang AS, 2009, PHARMACEUTICAL PERSPECTIVES OF CANCER THERAPEUTICS, P49, DOI 10.1007/978-1-4419-0131-6_2
  • Neary PM, 2010, ANN SURG ONCOL, V17, P1135, DOI 10.1245/s10434-009-0867-9
  • OJA SS, 1983, EUR J PHARMACOL, V87, P191, DOI 10.1016/0014-2999(83)90329-1
  • Pistritto G, 2016, AGING-US, V8, P603, DOI 10.18632/aging.100934
  • RAPPORT MM, 1947, J AM CHEM SOC, V69, P2561, DOI 10.1021/ja01202a511
  • Roth HS, 2016, CURR MED CHEM, V23, P201, DOI 10.2174/0929867323666151127201829
  • Smits RA, 2010, J MED CHEM, V53, P2390, DOI 10.1021/jm901379s
  • Srivastava S, 2010, CANCER BIOMARK, V6, P11, DOI 10.3233/CBM-2009-0115
  • Tu S, 2018, ONCOL LETT, V15, P5473, DOI 10.3892/ol.2018.8036
  • Vanitha MK, 2015, INT J PHARM RES HLTH, V3, P680
  • WINTERBOTTOM R, 1947, J AM CHEM SOC, V69, P1393, DOI 10.1021/ja01198a047
  • Zhang XL, 2014, ACTA BIOCH BIOPH SIN, V46, P261, DOI 10.1093/abbs/gmu004