Crystal growth morphology of magnesium hydroxide

In this paper, the formation process of magnesium hydroxide unit cells, as well as the structural characteristics and growth morphology of magnesium hydroxide, is discussed from the perspective of growth units. The growth process of the hexagonal structure of the magnesium hydroxide is as follows: the growth units are first incorporated into a larger hexagonal dimension unit on the same plane, and then the hexagonal layers connect to each other in the z-axis direction for the hexagonal magnesium hydroxide unit cell. The results of the study show that the model of anion coordination polyhedron growth units may be reasonably deduced by using the unit cell structure and growth mechanism of magnesium hydroxide. After using Raman spectroscopy of the magnesium hydroxide growth solution Raman shift, the growth units of the magnesium hydroxide are shown to be octahedral: [Mg-(OH)6]4-.

Crystal growth morphology of magnesium hydroxide

In this paper, the formation process of magnesium hydroxide unit cells, as well as the structural characteristics and growth morphology of magnesium hydroxide, is discussed from the perspective of growth units. The growth process of the hexagonal structure of the magnesium hydroxide is as follows: the growth units are first incorporated into a larger hexagonal dimension unit on the same plane, and then the hexagonal layers connect to each other in the z-axis direction for the hexagonal magnesium hydroxide unit cell. The results of the study show that the model of anion coordination polyhedron growth units may be reasonably deduced by using the unit cell structure and growth mechanism of magnesium hydroxide. After using Raman spectroscopy of the magnesium hydroxide growth solution Raman shift, the growth units of the magnesium hydroxide are shown to be octahedral: [Mg-(OH)6]4-.

___

  • Wu, J. S.; Xiao, Y. K.; Su, J. Y.; Deng, T. T.; Feng, J. R.; Zeng, M. Sci. China Ser. E. 2011, 54, 682–690.
  • Du, J.; Chen, Z.; Wu, Y. L.; Yang, M. D.; Dang J.; Yuan, J. J. Turk. J. Chem. 2013, 37, 228–238.
  • Shi, E. W.; Zhong, W. Z.; Hua, S. K.; Yuan, R. L.; Wang, B. G.; Xia, C. T.; Li, W. J. Sci. China Ser. E. 1998, 28, 37 −
  • Zhong, W. Z.; Hua, S. K. Morphology of Crystal Growth, Science Press; Beijing, 1999.
  • Zhong, W. Z.; Liu, G. Z.; Shi, E. W.; Hua, S. K. Sci. China Ser. B. 1994, 24, 349 −3
  • Zhang, X. H.; Luo, H. S.; Zhong, W. Z. Sci. China. Ser. E. 2004, 34, 241 −2
  • Shi, E. W.; Yuan, R. L.; Chen, Z. Z.; Zheng, Y. Q.; Tong, H. S.; Li, W.; Zhong, W. Z. Sci .China Ser. E. 2003, 33, 1 −
  • Tian, M. Y.; Shi, E. W.; Yuan, R. L.; Wang, B. G.; Li, W. J.; Zhong, W. Z.; Zhuang, J. Y. Sci. China Ser. E. 1998, 28, 113–118.
  • Zhong, W. Z.; Yu, X. L.; Luo, H. S.; Cheng, Z. Q.; Hua, S. K. Sci. China Ser. E. 1998, 28, 320–324.
  • Wu, J. S.; Xiao, Y. K.; Wan, J. Y.; Wen, L. R. Sci. China Ser. E. 2012, 55, 872–878.
  • Shi, E. W.; Xia, C. T.; Wang, B. G.; Li, W. J.; Yuan, R. L.; Zhong, W. Z. Sci. China Ser. E. 1997, 27, 126 −1 Zhong, W. Z.; Xia, C. T.; Shi, E. W.; Wang, B. G.; Li, W. J.; Hua, S. K. Sci. China Ser. E. 1997, 27, 9 −
  • Li, W. J.; Shi, E. W.; Tian, M. Y.; Wang, B. G.; Zhong, W. Z. Sci Chin. Ser. E 1998, 28, 212–219.
  • Zheng, Y. Q.; Shi, E.W.; Li, W. J.; Chen, Z. Z.; Zhong, W. Z. Hu, X. F. Sci. China Ser. E. 2001, 31, 289 −2 Zheng, Y. Q.; Shi, E. W.; Li, W. J.; Chen, Z. Z.; Zhong, W. Z. Hu, X. F. Sci. China Ser. E 2001, 31, 204 −2 Chen, Z. Z; Shi, E. W.; Yuan, R. L; Zheng, Y. Q.; Li, W. J.; Zhao, T. R. Sci. China Ser. E. 2003, 33, 589 −5 Xiang, S. F.; Ao, G. Q. Medium Inorganic Chemistry, Peking University Press, Beijing, 2003, pp. 25.
  • Liu, M. X.; Luo, G. A.; Zhang, X. Y.; Tong, A. J. Instrument Analysis, Tsinghua University Press; Beijing, 2002. Du, P. Y.; Pan, Y. Foundation of Material Science, Chinese Building Materials Industry Press, Beijing, 2002, pp.
  • Zhong, W. Z.; Hua, S. K. Crystal Growth Morphology, Science Press; Beijing, 1999, pp. 273–274.
  • Wu, J. S.; Xiao, Y. K.; Liu, Y. P.; Xu, W. B.; Lang, M. F.; Cheng, J.; Wan, J. P.; Chen, L. Z. Turk. J. Chem. 2011, 35, 881–891.
  • Ye, H. Master’s degree paper of Shandong University, 2006.
  • Wang, B. G.; Shi, E. W.; Zhong, W. Z. Journal of Synthetic Crystals 1997, 26, 189–189.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Application of guanidine and its salts in multicomponent reactions

Mahshid RAHIMIFARD, Ghodsi MOHAMMADI ZIARANI

In vitro effects of pesticide exposure on the activity of the paraoxonase-1 enzyme from sheep liver microsomes

Büşra Koncuk CEBECİ, Zuhal ALIM, Şükrü BEYDEMİR

Deposition and characterization of Cu9S5 nanocrystals from unsymmetrical [(Hex)(Me)NC(S)NC(O)C6H3(NO2)2-3,5]2Cu(II) and [(Et)(Bu)NC(S)NC(O)C6H4-4-NO2]2Cu(II) complexes by colloidal thermolysis method

Sohail SAEED, Rizwan HUSSAIN

Facile synthesis of 5-bromotropono[c]-fused pyrazoles and isoxazole

Yang LI, Liangyu XU, Wentao GAO

Novel N-acyl/aroyl-2-(5-phenyl-2H-tetrazol-2-yl)acetohydrazides: synthesis and characterization

Aamer SAEED, Majid HUSSAIN, Muhammad QASIM

Preparation and characterization of nonmetal promoter modified CuZnAl catalysts for higher alcohol from synthesis gas through complete liquid phase method

Shi-rui YU, Xiao-dong WANG, Wei HUANG

Investigation of the adsorption kinetics of methylene blue onto cotton wastes

Bilal ACEMİOĞLU, Murat ERTAŞ, Mehmet Hakkı ALMA, Mustafa USTA

Synthesis and phase transition studies of new dimer compounds connected to a 1,3-dimethylbarbituric acid core

AbdulKarim-Talaq MOHAMMAD, Guan-Yeow YEAP, Hasnah OSMAN

Selective oxidation of sulfides and hydrocarbons with H2O2 over manganese catalyst supported on nanoparticles

Massomeh GHORBANLOO, Roghayeh TARASI

PW12-APTES@MCF: effective nanosized mesoporous composites for the oxidation of benzyl alcohols

Razieh FAZAELI, Hamid ALIYAN, Somaieh Parishani FOROUSHANI, Zahra MOHAGHEGHIAN