Computational and biological studies of novel thiazolyl coumarin derivatives synthesized through Suzuki coupling

The current investigation presents the synthesis, computational molecular-docking and biological activity studies of arylated thiazole coumarins. Aryl substituted thiazolyl coumarin derivatives were synthesized via Suzuki cross-coupling reaction. A detailed reaction condition optimization revealed that the Pd-PEPPSI-IPent precatalyst in only 2 mol% loading resulted in the desired product with high yield. The aim of this study was to examine the antbnicrobial behavior of thiazole coumarin derivatives through in vitro and in silico studies. All the compounds showed activity against both antibacterial strains, Staphylococcus aureus and Escherichia coli, except 5d. Similarly, the compounds 5a, 5b, and 5d were found to be active against Trichoderma harzianum. The compound 5d of this series was found to have a higher activity with MIC 125 mg/ml against Trichoderma harzianum. Molecular studies showed the high activities of these compounds are due to the presence of strong 11-bonding and R-11 interaction with their respective targets. A good correlation was observed between computational and in vitro studies.

___

  • Ahmad H, 2020, EUR J MED CHEM, V208, DOI 10.1016/j.ejmech.2020.112759
  • Atwater B, 2016, CHEM-EUR J, V22, P14531, DOI 10.1002/chem.201603603
  • Ayati A, 2015, EUR J MED CHEM, V97, P699, DOI 10.1016/j.ejmech.2015.04.015
  • Borges F, 2005, CURR MED CHEM, V12, P887, DOI 10.2174/0929867053507315
  • Boyanova L, 2005, J MED MICROBIOL, V54, P481, DOI 10.1099/jmm.0.45880-0
  • Brockhurst MA, 2019, NAT ECOL EVOL, V3, P515, DOI 10.1038/s41559-019-0854-x
  • Cattoir V, 2019, J INFECT DIS, V220, P350, DOI 10.1093/infdis/jiz134
  • Chhabria MT, 2016, CURR TOP MED CHEM, V16, P2841, DOI 10.2174/1568026616666160506130731
  • Dinparast L, 2019, CHEMISTRYSELECT, V4, P9211, DOI 10.1002/slct.201901921
  • Fair RJ, 2014, PERSPECT MED CHEM, V6, P25, DOI 10.4137/PMC.S14459
  • Fotopoulos I, 2020, MED CHEM, V16, P272, DOI 10.2174/1573406415666190416121448
  • Grover J, 2015, RSC ADV, V5, P38892, DOI 10.1039/c5ra05643h
  • Hayat K, 2019, BIOORG CHEM, V87, P218, DOI 10.1016/j.bioorg.2019.03.019
  • Hooshmand SE, 2019, GREEN CHEM, V21, P381, DOI 10.1039/c8gc02860e
  • Ibrar A, 2016, BIOORG CHEM, V68, P177, DOI 10.1016/j.bioorg.2016.08.005
  • Kumar S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196016
  • Leelananda SP, 2016, BEILSTEIN J ORG CHEM, V12, P2694, DOI 10.3762/bjoc.12.267
  • Mohareb RM, 2007, PHOSPHORUS SULFUR, V182, P1661, DOI 10.1080/10426500701289914
  • Okeke MI, 2001, J ETHNOPHARMACOL, V78, P119, DOI 10.1016/S0378-8741(01)00307-5
  • Parveen S, 2018, BIOORG CHEM, V76, P166, DOI 10.1016/j.bioorg.2017.11.003
  • Pinzi L, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184331
  • Prashanth T, 2019, BIOMED PHARMACOTHER, V112, DOI 10.1016/j.biopha.2019.108707
  • Price GA, 2017, ANGEW CHEM INT EDIT, V56, P13347, DOI 10.1002/anie.201708598
  • Prieto-Martinez F.D., 2019, SILICO DRUG DESIGN, P19, DOI DOI 10.1016/B978-0-12-816125-8.00002-X
  • RAO VR, 1986, INDIAN J CHEM B, V25, P413
  • Sugino T, 2001, CHEM LETT, P110, DOI 10.1246/cl.2001.110
  • Surry DS, 2011, CHEM SCI, V2, P27, DOI 10.1039/c0sc00331j
  • Tang H, 2010, BIOORG MED CHEM LETT, V20, P979, DOI 10.1016/j.bmcl.2009.12.050
  • Valente C, 2012, ANGEW CHEM INT EDIT, V51, P3314, DOI 10.1002/anie.201106131
  • Wang WY, 2009, ARCH PHARM, V342, P732, DOI 10.1002/ardp.200900103
  • Wang Z., 2010, COMPREHENSIVE ORGANI, DOI [10.1002/9780470638859.conrr296., DOI 10.1002/9780470638859.CONRR296]