Comparative modelling of a novel enzyme: Mus musculus leucine decarboxylase

Leucine decarboxylase LDC is a recently proposed enzyme with no official enzyme commission number yet. It is encoded by the Mus musculus gene Gm853 which is expressed at kidneys, generating isopentylamine, an alkylmonoamine that has not been described to be formed by any metazoan enzyme yet. Although the relevance of LDC in mammalian physiology has not been fully determined, isopentylamine is a potential modulator which may have effects on insulin secretion and healthy gut microbiota formation. The LDC is a stable enzyme that specifically decarboxylates L-leucine but does not decarboxylate ornithine or lysine as its paralogues ornithine decarboxylase ODC; EC: 4.1.1.17 and lysine decarboxylase KDC; EC: 4.1.1.18 do. It does not act as an antizyme inhibitor and does not decarboxylate branched amino acids such as valine and isoleucine as it is another paralogue valine decarboxylase VDC; EC: 4.1.1.14 . The crystal structure of the enzyme has not been determined yet but there are homologous structures with complete coverage in Protein Data Bank PDB which makes LDC a good candidate for comparative modelling.In this study, homology models of LDC were generated and used in cofactor and substrate docking to understand the structure/function relationship underlying the unique selectivity of LDC enzyme.

___

  • 1. Pegg AE. Functions of polyamines in mammals. Journal of Biological Chemistry 2016; 291 (29): 14904-14912. doi: 10.1074/jbc.R116.731661
  • 2. Kahana C. The antizyme family for regulating polyamines. Journal of Biological Chemistry 2018; 293 (48): 18730- 18735. doi: 10.1074/jbc.TM118.003339
  • 3. Lambertos A, Ramos-Molina B, Cerezo D, López-Contreras AJ, Peñafiel R. The mouse Gm853 gene encodes a novel enzyme: Leucine decarboxylase. Biochimica et Biophysica Acta (BBA) - General Subjects 2018; 1862 (3): 365-376. doi: 10.1016/j.bbagen.2017.11.007
  • 4. Sutton CR, King HK. Inhibition of leucine decarboxylase by thiol-binding reagents. Archives of Biochemistry and Biophysics 1962; 96 (2): 360-370. doi: 10.1016/0003-9861(62)90421-6
  • 5. Suárez L, Moreno-Luque M, Martínez-Ardines I, González N, Campo P et al. Amine variations in faecal content in the first weeks of life of newborns in relation to breast-feeding or infant formulas. British Journal of Nutrition 2019; 122 (10): 1130-1141. doi: 10.1017/S0007114519001879
  • 6. Cripps MJ, Bagnati M, Jones TA, Ogunkolade BW, Sayers SR et al. Identification of a subset of trace amineassociated receptors and ligands as potential modulators of insulin secretion. Biochemical Pharmacology 2020; 171: 113685. doi: 10.1016/j.bcp.2019.113685
  • 7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology 1990; 215 (3): 403-410. doi: 10.1016/S0022-2836(05)80360-2
  • 8. McWilliam H, Li W, Uludag M, Squizzato S, Park YM et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Research 2013; 41 (W1): W597-W600. doi: 10.1093/nar/gkt376
  • 9. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 2014; 42 (W1): W320-W324. doi: 10.1093/nar/gku316
  • 10. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Research 2004; 14: 1188-1190. doi: 10.1101/gr.849004
  • 11. Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA et al. Crystal structure of human ornithine decarboxylase at 2.1 Å resolution: Structural insights to antizyme binding. Journal of Molecular Biology 2000; 295 (1): 7-16. doi: 10.1006/jmbi.1999.3331
  • 12. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research 2018; 46 (W1): W296-W303. doi: 10.1093/nar/gky427
  • 13. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 1993; 26: 283-291. doi: 10.1107/S0021889892009944
  • 14. Hooft RWW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature 1996; 381: 272. doi: 10.1038/381272a0
  • 15. Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science 1993; 2 (9): 1511-1519. doi: 10.1002/pro.5560020916
  • 16. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature 1992; 356: 83-85. doi: 10.1038/356083a0
  • 17. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional stucture. Science 1991; 253 (5016): 164-170. doi: 10.1126/science.1853201
  • 18. Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology 1996; 264 (1): 121-136. doi: 10.1006/jmbi.1996.0628
  • 19. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996; 14 (1): 33-38. doi: 10.1016/0263-7855(96)00018-5
  • 20. Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Research 2001; 29 (1): 221-222. doi: 10.1093/nar/29.1.221
  • 21. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research 2011; 39 (Suppl_2): W270-W277. doi: 10.1093/nar/gkr366
  • 22. Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. Journal of Computational Chemistry 2011; 32 (10): 2149-2159. doi: 10.1002/jcc.21797
  • 23. Sterling T, Irwin JJ. ZINC 15- ligand discovery for everyone. Journal of Chemical Information and Modeling 2015; 55 (11): 2324-2337. doi: 10.1021/acs.jcim.5b00559
  • 24. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004; 25 (13): 1605-1612. doi: 10.1002/jcc.20084
  • 25. Stierand K, Maaß PC, Rarey M. Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 2006; 22 (14): 1710-1716. doi: 10.1093/bioinformatics/btl150
  • 26. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 2017; 45 (D1): D200-D203. doi: 10.1093/nar/gkw1129
  • 27. Dufe VT, Ingner D, Heby O, Khomutov AR, Persson L et al. A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. Biochemical Journal 2007; 405 (2): 261-268. doi: 10.1042/BJ20070188
  • 28. Jackson LK, Brooks HB, Osterman AL, Goldsmith EJ, Phillips MA. Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 2000; 39 (37): 11247-11257. doi: 10.1021/bi001209s
  • 29. Wu HY, Chen SF, Hsieh JY, Chou F, Wang YH et al. Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proceedings of the National Academy of Sciences of the United States of America 2015; 112 (36): 11229-11234. doi: 10.1073/pnas.1508187112
  • 30. Wu D, Kaan HYK, Zheng X, Tang X, He Y et al. Structural basis of ornithine decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Scientific Reports 2015; 5: 14738. doi: 10.1038/srep14738
  • 31. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America 2001; 98 (16): 8966-8971. doi: 10.1073/pnas.151105198
  • 32. Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microbial Ecology in Health and Disease 2017; 28 (1): 1353881. doi: 10.1080/16512235.2017.1353881
  • 33. Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature 2006; 442: 645-650. doi: 10.1038/nature0506