Colorimetric cadmium ion detection in aqueous solutions by newly synthesized Schiff bases

Two newly synthesized Schiff bases DMCA and DMBA were used for selective detection of Cd$^{2+}$ over a wide range of other metal ions in acetonitrile ACN / Tris-HCl buffer 10 mM, pH 7.32, v/v 2:1 . The sensors can detect Cd$^{2+}$ ions by colour changes from colourless to orange for DMBA and yellow to reddish for DMCA. Response of the probes towards metal ions was investigated by using UV-vis spectroscopy. The complex stoichiometry between the sensors, DMBA and DMCA, and Cd$^{2+}$ was found to be 2:1 and the binding constants were calculated to be 2.65 x 10$^{12}$ M$^{-2\, }$and 4.95 x 10$^{12}$ M$^{-2}$, respectively.$^{\, }$The absorbance-based detection limits of DMBA and DMCA were calculated as 0.438 μM and 0.102 μM, respectively. The sensors were also successfully applied to real samples.

___

  • 1. Williams C, David D. The effect of superphosphate on the cadmium content of soils and plants. Soil Research 1973; 11 (1): 43-56. doi: 10.1071/SR9730043
  • 2. Salviano-Mendes AM, Duda GP, Araujo do Nascimento CW, Silva MO. Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola 2006; 63 (4): 328-332. doi: 10.1590/S0103- 90162006000400003
  • 3. Wang C, Fang Y, Peng S, Ma D, Zhao J. Synthesis of novel chelating agents and their effect on cadmium decorporation. Chemical Research in Toxicology 1999; 12 (4): 331-334. doi: 10.1021/tx970134z
  • 4. Varriale A, Staiano M, Rossi M, D’Auria S. High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection. Analytical Chemistry 2007; 79 (15): 5760-5762. doi: 10.1021/ac0705667
  • 5. Prozialeck WC, Edwards JR, Woods JM. The vascular endothelium as a target of cadmium toxicity. Life Sciences 2006; 79 (16): 1493-1506. doi: 10.1016/j.lfs.2006.05.007
  • 6. Boffetta P. Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scandinavian Journal of Work, Environment and Health 1993: 19 (Suppl 1): 67-70.
  • 7. Goyer RA, Liu J, Waalkes MP. Cadmium and cancer of prostate and testis. Biometals 2004; 17 (5): 555-558. doi: 10.1023/B:BIOM.0000045738.59708.20
  • 8. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters 2003; 137 (1-2): 65-83. doi: 10.1016/S0378-4274(02)00381-8
  • 9. McFarland C, Bendell-Young L, Guglielmo C, Williams T. Kidney, liver and bone cadmium content in the Western Sandpiper in relation to migration. Journal of Environmental Monitoring 2002; 4 (5): 791-795. doi: 10.1039/B206045K
  • 10. Gholivand MB, Pourhossein A, Shahlaei M. Simultaneous determination of copper and cadmium in environmental water and tea samples by adsorptive stripping voltammetry. Turkish Journal of Chemistry 2011; 35 (6): 839-846. doi: 10.3906/kim-1004-553
  • 11. Satti AA, Temuge ID, Bektaş S, Şahin ÇA. An application of coacervate-based extraction for the separation and preconcentration of cadmium, lead, and nickel ions prior to their determination by flame atomic absorption spectrometry in various water samples. Turkish Journal of Chemistry 2016; 40 (6): 979-987. doi: 10.3906/kim1605-80
  • 12. Dolan SP, Nortrup DA, Bolger PM, Capar SG. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. Journal of Agricultural Food Chemistry 2003; 51 (5): 1307-1312. doi: 10.1021/jf026055x
  • 13. Pyle SM, Nocerino JM, Deming SN, Palasota JA, Palasota JM et al. Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environmental Sciencetechnology 1995; 30 (1):204-13. doi: 10.1021/es9502482
  • 14. Zhu YF, Wang YS, Zhou B, Yu JH, Peng LL et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Analytical Bioanalytical Chemistry 2017; 409 (21): 4951-4958. doi: 10.1007/s00216-017-0436-1
  • 15. Shim S, Tae J. Rhodamine Cyclen-based fluorescent chemosensor for the detection of Cd 2+ . Bulletin of the Korean Chemical Society 2011; 32: 2928-2932. doi: 10.5012/bkcs.2011.32.8.2928
  • 16. Zhang Y, Zhang Z, Yin D, Li J, Xie R et al. Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Applied Materials Interfaces 2013; 5 (19): 9709-9713. doi: 10.1021/am402768w
  • 17. Gunnlaugsson T, Lee TC, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron 2004; 60 (49): 11239-11249. doi: 10.1016/j.tet.2004.08.047
  • 18. Xue L, Li G, Liu Q, Wang H, Liu C et al. Ratiometric fluorescent sensor based on inhibition of resonance for detection of cadmium in aqueous solution and living cells. Inorganic Chemistry 2011; 50 (8): 3680-3690. doi: 10.1021/ic200032e
  • 19. Xue L, Liu C, Jiang H. Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Organic Letters 2009; 11 (7): 1655-1658. doi: 10.1021/ol900315r
  • 20. Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M et al. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. Journal of the American Chemical Society 2006; 128 (48): 15517-15528. doi: 10.1021/ja065759a
  • 21. Wang AJ, Guo H, Zhang M, Zhou DL, Wang RZ et al. Sensitive and selective colorimetric detection of cadmium(II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole. Microchimica Acta 2013; 180 (11-12): 1051-1057. doi: 10.1007/s00604-013-1030-7
  • 22. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews 2012; 41 (8): 3210-3244. doi: 10.1039/C1CS15245A
  • 23. Song S, Zou S, Zhu J, Liu L, Kuang H. Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food and Agricultural Immunology 2018; 29 (1): 3-13. doi: 10.1080/09540105.2017.1354358
  • 24. Lv Y, Wu L, Shen W, Wang J, Xuan G et al. A porphyrin-based chemosensor for colorimetric and fluorometric detection of cadmium(II) with high selectivity. Journal of Porphyrins and Phthalocyanines 2015; 19 (6): 769-774. doi: 10.1142/S1088424615500510
  • 25. Cheng D, Liu X, Xie Y, Lv H, Wang Z et al. A ratiometric fluorescent sensor for Cd 2+ based on internal charge transfer. Sensors 2017; 17 (11): 2517. doi: 10.3390/s17112517
  • 26. Peralta-Domínguez D, Rodríguez M, Ramos-Ortíz G, Maldonado JL, Meneses-Nava MA et al. A Schiff base derivative from cinnamaldehyde for colorimetric detection of Ni 2+ in water. Sensors and Actuators B: Chemical 2015; 207: 511-517. doi: 10.1016/j.snb.2014.09.100
  • 27. Kang JH, Chae JB, Kim C. A multi-functional chemosensor for highly selective ratiometric fluorescent detection of silver(I) ion and dual turn-on fluorescent and colorimetric detection of sulfide. Royal Society Open Science 2018; 5: 180293. doi: 10.1098/rsos.180293
  • 28. Aydin Z, Keles M. Highly selective Schiff base derivatives for colorimetric detection of Al 3+ . Turkish Journal of Chemistry 2017; 41 (1): 89-98. doi: 10.3906/kim-1603-127
  • 29. Kar C, Samanta S, Goswami S, Ramesh A, Das G. A single probe to sense Al(III) colorimetrically and Cd(II) by turn-on fluorescence in physiological conditions and live cells, corroborated by X-ray crystallographic and theoretical studies. Dalton Transactions 2015; 44 (9): 4123-4132. doi: 10.1039/C4DT01433B
  • 30. Cho H, Chae JB, Kim C. Cinnamaldehyde-based chemosensor for colorimetric detection of Cu 2+ and Hg 2+ in a near-perfect aqueous solution. Chemistry Select 2019; 4 (9): 2795-2801. doi: 10.1002/slct.201900199
  • 31. Vashisht D, Sharma S, Kumar R, Saini V, Saini V et al. Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. Microchemical Journal 2020; 104705. doi: 10.1016/j.microc.2020.104705
  • 32. Guo M, Perez C, Wei Y, Rapoza E, Su G et al. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Transactions 2007; 43: 4951-4961. doi: 10.1039/B705136K
  • 33. Song EJ, Kang J, You GR, Park GJ, Kim Y et al. A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Transactions 2013; 42(43): 15514-15520. doi: 10.1039/C7NJ02569F
  • 34. Arabahmadi R, Orojloo M, Amani S. Azo Schiff bases as colorimetric and fluorescent sensors for recognition of F − , Cd 2+ and Hg 2+ ions. Analytical Methods 2014; 6(18): 7384-7393. doi: 10.1039/C4AY01564A
  • 35. Kumar A, Ahmed N. A coumarin–chalcone hybrid used as a selective and sensitive colorimetric and turn-on fluorometric sensor for Cd 2+ detection. New Journal of Chemistry 2017; 41(23): 14746-14753. doi: 10.1039/C7NJ02569F
  • 36. Jiang XJ, Li M, Lu HL, Xu LH, Xu H et al. A highly sensitive C3-symmetric Schiff-base fluorescent probe for Cd 2+ . Inorganic Chemistry 2014; 53(24): 12665-12667. doi: 10.1021/ic501279y
  • 37. Aydin Z. A turn-on fluorescent sensor for cadmium ion detection in aqueous solutions. Journal of the Turkish Chemical Society Section A: Chemistry 2020; 7(1): 277-286. doi: 10.18596/jotcsa.638912.
  • 38. Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S. Rhodamine diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd 2+ ion. Journal of Fluorescence 2017; 27(3): 1109-1115. doi: 10.1007/s10895-017-2046-x
  • 39. Zhao Q, Li RF, Xing SK, Liu XM, Hu TL et al. A highly selective on/off fluorescence sensor for cadmium(II). Inorganic Chemistry 2011; 50(20): 10041-10046. doi: 10.1021/ic2008182
  • 40. Hao J, Li XY, Zhang Y, Dong WK. A reversible bis (salamo)-based fluorescence sensor for selective detection of Cd 2+ in water-containing systems and food samples. Materials 2018; 11(4): 523. doi: 10.3390/ma11040523