CO2 hydrogenation to methanol and dimethyl ether at atmospheric pressure using Cu-Ho-Ga/gamma-Al2O3 and Cu-Ho-Ga/ZSM-5: Experimental study and thermodynamic analysis

CO2 valorization through chemical reactions attracts significant attention due to the mitigation of greenhouse gas effects. This article covers the catalytic hydrogenation of CO2 to methanol and dimethyl ether using Cu-Ho-Ga containing ZSM-5 and gamma-Al2O3 at atmospheric pressure and at temperatures of 210 degrees C and 260 degrees C using a CO2:H-2 feed ratio of 1:3 and 1:9. In addition, the thermodynamic limitations of methanol and DME formation from CO2 was investigated at a temperature range of 100-400 degrees C. Cu-Ho-Ga/gamma-Al2O3 catalyst shows the highest formation rate of methanol (90.3 mu mol CH3OH/g cat/h) and DME (13.2 mu mol DME/g cat/h) as well as the highest selectivity towards methanol and DME (39.9 %) at 210 degrees C using a CO2:H-2 1:9 feed ratio. In both the thermodynamic analysis and reaction results, the higher concentration of H-2 in the feed and lower reaction temperature resulted in higher DME selectivity and lower CO production rates.

___

  • Aguayo AT, 2007, IND ENG CHEM RES, V46, P5522, DOI 10.1021/ie070269s
  • Aguayo AT, 2005, CATAL TODAY, V106, P265, DOI 10.1016/j.cattod.2005.07.144
  • Ahmad K, 2019, SUSTAIN ENERG FUELS, V3, P2509, DOI 10.1039/c9se00165d
  • Alvarez A, 2017, CHEM REV, V117, P9804, DOI 10.1021/acs.chemrev.6b00816
  • Bonura G, 2018, J CO2 UTIL, V24, P398, DOI 10.1016/j.jcou.2018.01.028
  • Bozzano G, 2016, PROG ENERG COMBUST, V56, P71, DOI 10.1016/j.pecs.2016.06.001
  • Bulanek R, 2001, APPL CATAL B-ENVIRON, V31, P13, DOI 10.1016/S0926-3373(00)00268-X
  • Catizzone E, 2018, MOLECULES, V23, DOI 10.3390/molecules23010031
  • Centi G, 2009, CATAL TODAY, V148, P191, DOI 10.1016/j.cattod.2009.07.075
  • CHINCHEN GC, 1987, APPL CATAL, V30, P333, DOI 10.1016/S0166-9834(00)84123-8
  • Dai WL, 2001, APPL SURF SCI, V177, P172, DOI 10.1016/S0169-4332(01)00229-X
  • DEQUEIROZ GA, 2019, REV MAT, V24 .
  • Despres J, 2003, MICROPOR MESOPOR MAT, V58, P175, DOI 10.1016/S1387-1811(02)00627-3
  • Diez-Ramirez J, 2017, IND ENG CHEM RES, V56, P1979, DOI 10.1021/acs.iecr.6b04662
  • Frusteri F, 2015, APPL CATAL B-ENVIRON, V176, P522, DOI 10.1016/j.apcatb.2015.04.032
  • Gao Q, 2020, CATALYSTS, V10, DOI 10.3390/catal10030336
  • Ghorbanpour A, 2016, ACS CATAL, V6, P2287, DOI 10.1021/acscatal.5b02367
  • Ghosh M, 2004, CHEM PHYS LETT, V393, P493, DOI 10.1016/j.cplett.2004.06.092
  • Iwasa N, 2004, CATAL LETT, V96, P75, DOI 10.1023/B:CATL.0000029533.41604.13
  • Kang ZJ, 1996, CHEM RES CHINESE U, V12, P280
  • Liang BL, 2019, IND ENG CHEM RES, V58, P9030, DOI 10.1021/acs.iecr.9b01546
  • Liu DH, 2011, FUEL, V90, P1738, DOI 10.1016/j.fuel.2011.01.038
  • Mateos-Pedrero C, 2015, APPL CATAL B-ENVIRON, V174, P67, DOI 10.1016/j.apcatb.2015.02.039
  • Mei CS, 2008, J CATAL, V258, P243, DOI 10.1016/j.jcat.2008.06.019
  • Ortega C, 2018, CHEM ENG J, V347, P741, DOI 10.1016/j.cej.2018.04.160
  • Perry S, 2000, PERRYS CHEM ENG HDB .
  • Samimi F, 2017, CATALYSTS, V7, DOI 10.3390/catal7110332
  • Shao CT, 2017, RSC ADV, V7, P4710, DOI 10.1039/c6ra27204e
  • Sharafutdinov I, 2014, J CATAL, V320, P77, DOI 10.1016/j.jcat.2014.09.025
  • Studt F, 2014, NAT CHEM, V6, P320, DOI [10.1038/NCHEM.1873, 10.1038/nchem.1873]
  • Surdu-Bob CC, 2001, APPL SURF SCI, V183, P126, DOI 10.1016/S0169-4332(01)00583-9
  • Takeguchi T, 2000, APPL CATAL A-GEN, V192, P201, DOI 10.1016/S0926-860X(99)00343-9
  • Tijm PJA, 2001, APPL CATAL A-GEN, V221, P275, DOI 10.1016/S0926-860X(01)00805-5
  • van Santen RA, 2007, CATALYSIS RENEWABLES, P1, DOI [10.1002/9783527621118.ch1, DOI 10.1002/9783527621118.CH1]
  • Wang L, 2018, ACS CATAL, V8, P90, DOI 10.1021/acscatal.7b02733
  • Waugh KC, 2012, CATAL LETT, V142, P1153, DOI 10.1007/s10562-012-0905-2
  • Xu MT, 1997, APPL CATAL A-GEN, V149, P289, DOI 10.1016/S0926-860X(96)00275-X
  • Zohour B, 2016, CHEMCATCHEM, V8, P1464, DOI 10.1002/cctc.201600020