Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes?

The newly synthesized cyclotriphosphazene cored coumarin chemosensors 5, 6, and 7 were successfully characterized by 1H NMR, 31P NMR, and MALDI-TOF mass spectrometry. Additionally, the photophysical and metal sensing properties of the targeted compounds were determined by fluorescence spectroscopy in the presence of various metals (Li+ , Na+ , K+ , Cs+ , Mg2+ , Ca2+ , Ba2+ , Cr3+ , Mn2+ , Fe3+ , Co2+ , Al3+ , Hg+ , Cu2+ , Zn2+ , Ag+ , and Cd2+) . The fluorescence titration results showed that compounds 5, 6, and 7 could be employed as fluorescent chemosensors for Fe3+ ions with high sensitivity. The complex stoichiometry between final cyclotriphosphazene chemosensors and Fe3+ ions was also determined by Job's plots.

___

  • 1. Jonaghani MZ, Zali-Boeini H, Moradi H. A coumarin based highly sensitive fluorescent chemosensor for selective detection of zinc ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 207: 16-22. doi: 10.1016/j.saa.2018.08.061
  • 2. Liu F, Fan C, Pu S. A new “turn-on” fluorescent chemosensor for Zn2+ based on a diarylethene derivative and its practical applications. Journal of Photochemistry and Photobiology A: Chemistry 2019; 371: 248-254. doi: 10.1016/j.jphotochem.2018.11.020
  • 3. Jang M, Kang S, Han MS. A simple turn-on fluorescent chemosensor for CO2 based on aggregation-induced emission: application as a CO2 absorbent screening method. Dyes and Pigments 2019; 162: 978-983. doi:10.1016/j.dyepig.2018.11.031
  • 4. Yao J, Dou W, Qin W, Liu W. A new coumarin-based chemosensor for Fe3+ in water. Inorganic Chemistry Communications 2009; 12 (2): 116-118. doi: 10.1016/j.inoche.2008.11.012
  • 5. Şenkuytu E, Yenilmez Çiftçi G. Structural and chemosensor properties of FDA and FDP derivatives of fluorenylidene bridged cyclotetraphosphazenes. Polyhedron 2016; 115: 247-256. doi: 10.1016/j.poly.2016.04.046
  • 6. Qin JC, Yang ZY, Wang GQ, Li CR. FRET-based rhodamine–coumarin conjugate as a Fe3+ selective ratiometric fluorescent sensor in aqueous media. Tetrahedron Letters 2015; 56 (35): 5024-5029. doi: 10.1016/j.tetlet.2015.07.023
  • 7. Salvador JP, Tassies D, Reverter JC, Marco MP. Enzyme-linked immunosorbent assays for therapeutic drug monitoring coumarin oral anticoagulants in plasma. Analytica Chimica Acta 2018; 1028: 59-65. doi:10.1016/j.aca.2018.04.042
  • 8. Arcau J, Andermark V, Aguiló E, Gandioso A, Moro A et al. Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity. Dalton Transactions 2014; 43 (11): 4426-4436. doi: 10.1039/C3DT52594E
  • 9. Zou Q, Fang Y, Zhao Y, Zhao H, Wang Y et al. Synthesis and in vitro photocytotoxicity of coumarin derivatives for one- and two-photon excited photodynamic therapy. Journal of Medicinal Chemistry 2013; 56 (13): 5288-5294. doi: 10.1021/jm400025g
  • 10. Nofal ZM, El-Zahar MI, Abd El-Karim SS. Novel coumarin derivatives with expected biological activity. Molecules 2000; 5 (2): 99-113.
  • 11. Vargas-Soto FA, Céspedes-Acuña CL, Aqueveque-Muñoz PM, Alarcón-Enos JE. Toxicity of coumarins synthesized by Pechmann-Duisberg condensation against Drosophila melanogaster larvae and antibacterial effects. Food and Chemical Toxicology 2017; 109: 1118-1124. doi: 10.1016/j.fct.2017.05.051
  • 12. Reddy DS, Kongot M, Netalkar SP, Kurjogi MM, Kumar R et al. Synthesis and evaluation of novel coumarinoxime ethers as potential anti-tubercular agents: their DNA cleavage ability and BSA interaction study. European Journal of Medicinal Chemistry 2018; 150: 864-875. doi: 10.1016/j.ejmech.2018.03.042
  • 13. Lingaraju GS, Balaji KS, Jayarama S, Anil SM, Kiran KR et al. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters 2018; 28 (23): 3606-3612. doi: 10.1016/j.bmcl.2018.10.046
  • 14. Hamdy AM, Khaddour Z, Al-Masoudi NA, Rahman Q, Hering-Junghans C et al. Synthesis of arylated coumarins by Suzuki–Miyaura cross-coupling. Reactions and anti-HIV activity. Bioorganic & Medicinal Chemistry 2016; 24 (21): 5115-5126. doi: 10.1016/j.bmc.2016.08.029
  • 15. Kumar R, Saha A, Saha D. A new antifungal coumarin from Clausena excavata. Fitoterapia 2012; 83 (1): 230-233. doi: 10.1016/j.fitote.2011.11.003
  • 16. Jones G, Jackson WR, Choi CY, Bergmark WR. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. Journal of Physical Chemistry 1985; 89 (2): 294-300. doi: 10.1021/j100248a024
  • 17. Jones G, Jimenez JAC. Azole-linked coumarin dyes as fluorescence probes of domain-forming polymers. Journal of Photochemistry and Photobiology B: Biology 2001; 65 (1): 5-12. doi: 10.1016/S1011-1344(01)00236-6
  • 18. El-Kemary M, Rettig W. Multiple emission in coumarins with heterocyclic substituents. Physical Chemistry Chemical Physics 2003; 5 (23): 5221-5228. doi: 10.1039/B308712C
  • 19. Tataroğlu A, Özen F, Koran K, Dere A, Görgülü AO et al. Structural, electrical and photoresponse properties of Si-based diode with organic interfacial layer containing novel cyclotriphosphazene compound. Silicon 2018; 10 (3): 683-691. doi: 10.1007/s12633-016-9513-x
  • 20. Tanrıverdi Eçik E, Şenkuytu E, İbişoğlu H, Zorlu Y, Yenilmez Çiftçi G. Synthesis and fluorescence properties of cyclophosphazenes containing thiazole or thiadiazole rings. Polyhedron 2017; 135: 296-302. doi: 10.1016/j.poly.2017.07.017
  • 21. Şenkuytu E, Yıldırım T, Ölçer Z, Uludağ Y, Yenilmez Çiftçi G. DNA interaction analysis of fluorenylidene double bridged cyclotriphosphazene derivatives. Inorganica Chimica Acta 2018; 477: 219-226. doi: 10.1016/j.ica.2018.02.035
  • 22. Ün İ, İbişoğlu H, Kılıç A, Ün ŞŞ, Yuksel F. Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes. Inorganica Chimica Acta 2012; 387: 226-233. doi: 10.1016/j.ica.2012.01.021
  • 23. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A. Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Transactions 2013; 42 (41): 14916-14926. doi: 10.1039/C3DT51426A
  • 24. Yenimez Çiftçi G, Eçik ET, Bulut M, Yuksel F, Kılıç A et al. Synthesis and characterization of dicoumarol substituted cyclotriphosphazenes. Inorganica Chimica Acta 2013; 398: 106-112. doi: 10.1016/j.ica.2012.12.019
  • 25. Yenilmez Çiftçi G, Şenkuytu E, Bulut M, Durmuş M. Novel coumarin substituted water soluble cyclophosphazenes as “turn-off” type fluorescence chemosensors for detection of Fe3+ ions in aqueous media. Journal of Fluorescence 2015; 25 (6): 1819-1830. doi: 10.1007/s10895-015-1672-4
  • 26. Şenkuytu E, Eker Y, Yenilmez Çiftçi G. 4-Hydroxycoumarin functionalized cyclotriphosphazenes: synthesis, characterization and fluorescence properties. Inorganica Chimica Acta 2017; 459: 45-50. doi: 10.1016/j.ica.2017.01.023
  • 27. Pişkin M, Durmuş M, Bulut M. Highly soluble 7-oxy-3-(4-methoxyphenyl)coumarin bearing zinc phthalocyanines: synthesis and investigation of photophysical and photochemical properties. Journal of Photochemistry and Photobiology A: Chemistry 2011; 223 (1): 37-49. doi: 10.1016/j.jphotochem.2011.07.014
  • 28. Bondarenko SP, Frasinyuk MS, Khilya VP. Aminomethylation of 3-aryl-7-hydroxycoumarins. Chemistry of Heterocyclic Compounds 2010; 46 (5): 529-535. doi: 10.1007/s10593-010-0541-y
  • 29. Kaya EN, Yuksel F, Özpınar GA, Bulut M, Durmuş M. 7-Oxy-3-(3,4,5-trimethoxyphenyl)coumarin substituted phthalonitrile derivatives as fluorescent sensors for detection of Fe3+ ions: experimental and theoretical study. Sensors and Actuators B: Chemical 2014; 194: 377-388. doi: 10.1016/j.snb.2013.12.044
  • 30. Alidağı HA, Tümay SO, Şenocak A, Yeşilot S. Pyrene functionalized cyclotriphosphazene-based dyes: synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds. Dyes and Pigments 2018; 153: 172-181. doi: 10.1016/j.dyepig.2018.02.012
  • 31. Parker CA, Rees WT. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 1960; 85 (1013): 587-600. doi: 10.1039/AN9608500587