Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting

In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 degrees C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm(-2)) compared to the undoped TiO(2 )nanotube arrays (0.19 mA cm(-2)). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.

___

  • Abe R, 2010, J PHOTOCH PHOTOBIO C, V11, P179, DOI 10.1016/j.jphotochemrev.2011.02.003
  • Alfaifi B.Y., 2018, VERUSCRIPT FUNCT NAN, V2, pBDJOC3, DOI [10.22261/FNAN.BDJOC3, DOI 10.22261/FNAN.BDJOC3]
  • Allam NK, 2009, LANGMUIR, V25, P7234, DOI 10.1021/la9012747
  • Asahi R, 2014, CHEM REV, V114, P9824, DOI 10.1021/cr5000738
  • Bakranov N, 2018, J PHYS CONF SER, V987, DOI 10.1088/1742-6596/987/1/012028
  • Berger T, 2006, ELECTROCHEM COMMUN, V8, P1713, DOI 10.1016/j.elecom.2006.08.006
  • Chang X, 2014, ACS CATAL, V4, P2616, DOI 10.1021/cs500487a
  • Chen X, 2007, CHEM REV, V107, P2891, DOI 10.1021/cr0500535
  • Chen XB, 2011, SCIENCE, V331, P746, DOI 10.1126/science.1200448
  • CHOI WY, 1994, J PHYS CHEM-US, V98, P13669, DOI 10.1021/j100102a038
  • CHOI WY, 1994, ANGEW CHEM INT EDIT, V33, P1091, DOI 10.1002/anie.199410911
  • Gillaspie DT, 2010, J MATER CHEM, V20, P9585, DOI 10.1039/c0jm00604a
  • Grimes Samir, 2009, Marine Biodiversity Records, V2, pe134, DOI 10.1017/S1755267209990522
  • Habisreutinger SN, 2013, ANGEW CHEM INT EDIT, V52, P7372, DOI 10.1002/anie.201207199
  • Hensel J, 2010, NANO LETT, V10, P478, DOI 10.1021/nl903217w
  • HOFFMANN MR, 1995, CHEM REV, V95, P69, DOI 10.1021/cr00033a004
  • Hu YH, 2012, ANGEW CHEM INT EDIT, V51, P12410, DOI 10.1002/anie.201206375
  • Hwang YJ, 2009, NANO LETT, V9, P410, DOI 10.1021/nl8032763
  • Inturi SNR, 2014, APPL CATAL B-ENVIRON, V144, P333, DOI 10.1016/j.apcatb.2013.07.032
  • Jiang XD, 2012, J PHYS CHEM C, V116, P22619, DOI 10.1021/jp307573c
  • Kim C, 2015, ACS APPL MATER INTER, V7, P7486, DOI 10.1021/acsami.5b00123
  • Li Y, 2010, LASER PHOTONICS REV, V4, P517, DOI 10.1002/lpor.200910025
  • Liao WJ, 2014, ELECTROCHIM ACTA, V136, P310, DOI 10.1016/j.electacta.2014.05.091
  • Lin YJ, 2009, J AM CHEM SOC, V131, P2772, DOI 10.1021/ja808426h
  • Liu MZ, 2011, CHEM SCI, V2, P80, DOI 10.1039/c0sc00321b
  • Macak JM, 2007, ADV MATER, V19, P3027, DOI 10.1002/adma.200602549
  • Maeda K, 2010, J PHYS CHEM LETT, V1, P2655, DOI 10.1021/jz1007966
  • Mor GK, 2005, NANO LETT, V5, P191, DOI 10.1021/nl048301k
  • Mor GK, 2007, NANO LETT, V7, P2356, DOI 10.1021/nl0710046
  • Neville EM, 2014, APPL CATAL A-GEN, V470, P434, DOI 10.1016/j.apcata.2013.11.024
  • Ni M, 2007, RENEW SUST ENERG REV, V11, P401, DOI 10.1016/j.rser.2005.01.009
  • Ohno T, 2008, APPL CATAL A-GEN, V349, P70, DOI 10.1016/j.apcata.2008.07.016
  • Park JH, 2006, NANO LETT, V6, P24, DOI 10.1021/nl051807y
  • Park JH, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2357878
  • Peighambardoust NS, 2019, SOL ENERGY, V184, P115, DOI 10.1016/j.solener.2019.03.073
  • Peighambardoust NS, 2018, ELECTROCHIM ACTA, V270, P245, DOI 10.1016/j.electacta.2018.03.091
  • Peighambardoust NS, 2013, SURF COAT TECH, V235, P727, DOI 10.1016/j.surfcoat.2013.08.058
  • Qin W, 2013, INT J ELECTROCHEM SC, V8, P7984
  • Regonini D, 2010, SURF INTERFACE ANAL, V42, P139, DOI 10.1002/sia.3183
  • Sakai N, 2001, J ELECTROCHEM SOC, V148, pE395, DOI 10.1149/1.1399279
  • Samiolo L, 2010, ELECTROCHIM ACTA, V55, P7788, DOI 10.1016/j.electacta.2009.09.044
  • Sun Y, 2011, J PHYS CHEM C, V115, P12844, DOI 10.1021/jp1116118
  • Tong H, 2012, ADV MATER, V24, P229, DOI 10.1002/adma.201102752
  • Tsuchiya H, 2007, CORROS SCI, V49, P203, DOI 10.1016/j.corsci.2006.05.009
  • Wang XC, 2009, NAT MATER, V8, P76, DOI 10.1038/NMAT2317
  • Wang YQ, 2012, J AM CHEM SOC, V134, P7874, DOI 10.1021/ja301266w
  • Wu Q, 2006, MIDWEST SYMP CIRCUIT, P2 .
  • Xing MY, 2011, CHEM COMMUN, V47, P4947, DOI 10.1039/c1cc10537j
  • Xu Y, 2019, J POWER SOURCES, V414, P242, DOI 10.1016/j.jpowsour.2018.12.083
  • Yang XY, 2009, NANO LETT, V9, P2331, DOI 10.1021/nl900772q
  • Zhang HJ, 2009, J MATER CHEM, V19, P5089, DOI 10.1039/b821991e
  • Zhang ZH, 2013, NANO LETT, V13, P14, DOI 10.1021/nl3029202
  • Zhang ZH, 2010, INT J HYDROGEN ENERG, V35, P8528, DOI 10.1016/j.ijhydene.2010.03.032
  • Zhao X, 2013, ENVIRON SCI TECHNOL, V47, P4480, DOI 10.1021/es3046982
  • Zhou H, 2014, J PHYS CHEM C, V118, P5626, DOI 10.1021/jp4082883
  • Zhou XM, 2016, ANGEW CHEM INT EDIT, V55, P3763, DOI 10.1002/anie.201511580
  • Zuo F, 2010, J AM CHEM SOC, V132, P11856, DOI 10.1021/ja103843d
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK