Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process

This paper aimed at implementing a treatment system for polluted water with textile dyes, starting with a photocatalytic decomposition process using sunlight as a source of energy and continuing with a bacterial biodegradation process, in order to reach degradation percentages higher than those obtained using only one of the processes mentioned above. When water treatment with the dye in the combined system was over, an acute ecotoxicity test was performed to make sure that toxic metabolites were not produced due to biodegradation. Solophenyl Blue azoic dye, and Erionyl Blue and Terasil Blue anthraquinone dye-colored solutions were treated with the Pd/Al80 Ce10 Zr10 catalyst in a solar collector for the photocatalytic process. On the other hand, the waste dye, which was obtained from photocatalysis with a bacterial consortium from polluted areas by metals and hydrocarbons in aerobic conditions, was inoculated for biodegradation. Biodegradation was obtained for the dyes after both processes as 90.91% for the Solophenyl Blue azoic dye, and 87.80% and 87.94%, respectively, for the Erionyl Blue and Terasil Blue anthraquinone dyes. After the degradation processes, it was proven, via an ecotoxicity test with Daphnia magna, that toxic metabolites had not been produced.

___

  • 1. Solís M, Solís A, Pérez H, Manjarrez N, Flores M. Microbial decolouration of azo dyes: A review. Process Biochemistry 2012; 47: 1723-1748.
  • 2. Arun A, Bhaskara K. Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology Biotechnology 2013; 97: 7469-7481.
  • 3. Asad S, Amoozegar M, Pourbabaee A, Sarbolouki M, Dastgheib S. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology 2007; 98: 2082-2088.
  • 4. Franciscon E, Zille A, Dias F, Ragagnin C, Durrant R, Cavaco-Paulo A. Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. International Biodeterioration and Biodegradation 2009; 63: 280-288.
  • 5. Saratale R, Saratale G, Chang J, Govindwar S. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers 2011; 42: 138-157.
  • 6. Christie R. La química del color. Zaragoza, España: Acribia, 2003 (in Spanish).
  • 7. Gilabert E. Química textil. Tomo II: Materias dyees. Valencia, España: Universidad Politécnica de Valencia, 2003 (in Spanish).
  • 8. Vaithilingam K, Ahmed C, Janardhana H, Kalaichelvi P, Nelliyan S. The potential of free cells of Pseudomonas aeruginosa on textile dye degradation. Bioresource Technology 2010; 101: 2678-2684.
  • 9. Tan L, He M, Song L, Fu X, Shi S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresource Technology 2016; 203: 287-294.
  • 10. Khandare R, Govindwar S. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnology Advances 2015; 33: 1697-1714.
  • 11. Franciscon E, Piubeli F, Fantinatti-Garboggini F, Ragagnin C, Serrano I et al. Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme and Microbial Technology 2010; 46: 360-365.
  • 12. Kalyani D, Patil P, Jadhav J, Govindwar S. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology 2008; 99: 4635-4641.
  • 13. Gomes C, Wang W, Faria J. Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2006; 181: 314-324.
  • 14. García J, Ruiz N, Muñoz I, Domènech X, García J et al. Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. Journal of Hazardous Materials 2006; 138: 218-225.
  • 15. Ibrahim U, Halim A. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide. Journal of Photochemistry and Photobiology Photochemistry Reviews 2008; 9 (1): 1-12.
  • 16. Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE et al. TiO2 anatase with a bandgap in the visible region. Nano Letters 2014; 14: 6533-6538.
  • 17. Ramírez P, Mendoza A. Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: La experiencia en México. Ciudad de México, México; Secretaría de Medio Ambiente y Recursos Naturales: Instituto Nacional de Ecología. México: Secretaría del medio Ambiente y Recursos naturales, 2008 (in Spanish).
  • 18. Núñez M, Hurtado J. Bioensayos de toxicidad aguda utilizando Daphnia magna Straus (Cladocera, Daphniidae) desarrollada en medio de cultivo modificado. Revista Peruana de Biología 2005; 12 (1): 165-170 (in Spanish).
  • 19. Qiuyan W, Zhenguo L, Bo Z, Guangfeng L, Renxian Z. Effect of a synthesis method on the properties of ceria– zirconia modified alumina and the catalytic performance of its supported Pd-only three-way catalyst. Journal of Molecular Catalysis A: Chemical 2011; 344: 132-137.
  • 20. Pérez OG, Hernández AF, Arriola MJ, Mendoza HJ, Chávez BF. Efecto de la variación en la composición de óxidos de aluminio-cerio-zirconio sobre la fotodegradación de tolueno en agua. Revista Latinoamericana el Ambiente y las Ciencias 2015; 6 (14): 112-122 (in Spanish with an abstract in English).
  • 21. Pérez OG, Mendoza HJC, Rubio RE, Sánchez TGI, Hernández AF. Photodegradation of benzene in water with palladium catalysts supported on aluminum, cerium and zirconium oxides. SYLWAN Journal 2016; 160 (2): 367- 374.
  • 22. Banica R, Linul P, Mosoarca C. Synthesis of PdS/ZnS-CdS-type photocatalysts using ZnS as sulphide source. Turkish Journal of Chemistry 2017; 41: 874-882.
  • 23. Masuda K, Kawai M, Kuno K, Kachi N, Mizukami F. In: Poncelet G, Jacobs PA, Grange P, Delmon B (editors). Preparation of Catalysts V. Amsterdam: Elsevier, 1991.
  • 24. Mendoza J, Perea Y, Arriola J, Martínez S, Pérez G. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research 2016; 188: 53-61.
  • 25. Mendoza J, Vega M, Silveti A, Arriola J, Pérez G. Estudio de la Estructura de las Biopelículas de Pseudomonas Putida Mediante Microscopia de Fuerza Atómica (AFM) en Presencia de Permetrina y Cipermetrina. International Multilingual Journal of Contemporary Research 2015; 3: 120-130 (in Spanish with an abstract in English).
  • 26. Azizi A, Alavi M, Maknoon R, Kowsarid E. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study. Journal of Hazardous Materials 2015; 299: 343-350.
  • 27. International Centre for Diffraction Data. Joint Committee on Powder Diffraction Standards, 2009.
  • 28. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catalysis Today 2001; 68: 53-61.
  • 29. Pérez O G, Castillón F, Simakov A, Tiznado H, Zaera F et al. Effect of ceria-zirconia ratio on the interaction of CO with PdO/Al 2 O3 -(Ce 1−X ZrX) O2 catalysts prepared by sol-gel method. Applied Catalysis B 2007, 69: 219-225.
  • 30. Xin-Hui Su C, Wei Low L, Tow Teng T, Shian Wong Y. Combination and hybridisation of treatments in dye wastewater treatment: A review. Journal of Environmental Chemical Engineering 2016; 4: 3618-3631.
  • 31. Lasyal R, Goel A. Facile synthesis of IrO2 nanoclusters and their application as catalysts in the degradation of azo dyes. Turkish Journal of Chemistry 2018; 42: 941-957.
  • 32. Barakat M. Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension. Journal of Hydro-Environment Research 2011; 5: 137-142.
  • 33. Chan S, Wu T, Juan J, Teha C. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Chemical Technology Biotechnology 2011; 86: 1130- 1158.
  • 34. Fanchiang J, Tseng D. Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation. Chemosphere 2009; 77: 214-221.
  • 35. Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahraa O et al. Photocatalytic and combined anaerobic– photocatalytic treatment of textile dyes. Chemosphere 2008; 72: 1816-1822.
  • 36. Lalnunhlimi S, Krishnaswamy V. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of microbiology 2016; 47: 39-46
  • 37. Ponraj M, Gokila G, Zambare V. Bacterial decolorization of textile dye- orange 3R. International Journal of Advanced Biotechnology and Research 2011; 2: 168-177.
  • 38. Phuong Thao T, Kao H, Juang R, Chi-Wei Lan J. Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. Journal of the Taiwan Institute of Chemical Engineers 2013; 44: 780-785.
  • 39. Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B. Decolorization and Degradation of C. I. Reactive Red 195 by Enterobacter sp. Thammasat. International Journal Science and Technology 2007; 12 (6): 6-11.
  • 40. Deng D, Guo J, Zeng G, Sun G. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. International Biodeterioration and Biodegradation 2008; 62: 263-269.
  • 41. Forss J, Welander U. Biodegradation of azo and anthraquinone dyes in continuous systems. International Biodeterioration and Biodegradation 2011; 65: 227-237.
  • 42. Rawat D, Mishra V, Shyam Sharma R. Detoxification of azo dyes in the context of environmental processes. Chemosphere 2016; 155: 591-605.
  • 43. Basha CA, Selvakumar KV, Prabhu HJ, Sivashanmugam P, Lee CW. Degradation studies for textile reactive dye by combined electrochemical, microbial and photocatalytic methods. Separation and Purification Technology 2011; 79: 303-309.
  • 44. Brosillon S, Djelal H, Merienne N, Amrane A. Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 2008; 222: 331-339.
  • 45. Waghmode TR, Kurade MB, Sapkal RT, Bhosale CH, Byong-Hun J, Govindwar SP. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. Journal of Hazardous Materials 2019; 371: 115-122.
  • 46. Maliyappa MR, Keshavayya J, Mallikarjuna NM, Murali Krishna P, Shivakumara N et al. Synthesis, characterization, pharmacological and computational studies of 4, 5, 6, 7-tetrahydro-1, 3-benzothiazole incorporated azo dyes. Journal of Molecular Structure 2019; 1179: 630-641.
  • 47. Shinde S, Sekar N. Synthesis, spectroscopic characteristics, dyeing performance and TD-DFT study of quinolone based red emitting acid azo dyes. Dyes and Pigments 2019; 168: 12-27.
  • 48. Srinivasan S, Sadasivam SK. Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of Water Process Engineering 2018; 22: 180-191.
  • 49. Bouras HD, Isik Z, Arikan EB, Bourasd N, Cherguia A et al. Photocatalytic oxidation of azo dye solutions by impregnation of ZnO on fungi. Biochemical Engineering Journal 2019; 146: 150-159.